13 resultados para Visually Impaired
em Scielo Saúde Pública - SP
Resumo:
The objectives were to develop and evaluate an assistive technology for the use of the male condom by visually impaired men. It was a technology development study with the participation of seven subjects. Three workshops were performed between April and May of 2010; they were all filmed and the statements of the participants were transcribed and analyzed by content. Three categories were established: Sexuality of the visually impaired; Utilization of the text, For avoiding STDs, condoms we will use, divided in two subcategories, Concept discussion and Text evaluation; and Construction of a simple penile prosthesis. The knowledge transmitted related to STD, the utilization of the condom on the penile prosthesis made by the subjects themselves, and the interaction during the workshops were effective factors for the study. In the context of sexual health, the necessity of developing works involving the visually impaired was noted, addressing sexually transmitted diseases and focusing on the use of the condom by this population.
Resumo:
OBJECTIVE To validate assistive technology for visually impaired women to learn how to use the female condom. METHOD a methodological development study conducted on a web page, with data collection between May and October 2012. Participants were 14 judges; seven judges in sexual and reproductive health (1st stage) and seven in special education (2nd stage). RESULTS All items have reached the adopted parameter of 70% agreement. In Stage 1 new materials were added to represent the cervix, and instructions that must be heard twice were included in the 2nd stage. CONCLUSION The technology has been validated and is appropriate for its objectives, structure / presentation and relevance. It is an innovative, low cost and valid instrument for promoting health and one which may help women with visual disabilities to use the female condom.
Resumo:
Impaired renal function was observed in sixteen Aotus nancymai 25 and 3 months following infection with the Uganda Palo Alto strain of Plasmodium falciparum. Decrease were noted in the clearance of endogenous creatinine, creatinine excretion, and urine volume while increases were observed in serum urea nitrogen, urine protein, urine potassium, fractional excretion of phosphorus and potassium, and activities of urinary enzymes. The results were suggestive of glomerulonephropathy and chronic renal disease.
Resumo:
The effect of streptozotocin-induced diabetes mellitus was studied in mice infected with Schistosoma mansoni. Faecal egg excretion was lower in diabetic mice but worm load and total amount of eggs in the intestine tissue were equal to the control group. Evaluation of an oogram showed a great number of immature dead eggs and a low number of mature eggs in diabetic mice. It was therefore concluded that faecal egg excretion was lower in diabetic mice due to impaired egg maturation.
Resumo:
Duchenne muscular dystrophy is one of the most devastating myopathies. Muscle fibers undergo necrosis and lose their ability to regenerate, and this may be related to increased interstitial fibrosis or the exhaustion of satellite cells. In this study, we used mdx mice, an animal model of Duchenne muscular dystrophy, to assess whether muscle fibers lose their ability to regenerate after repeated cycles of degeneration-regeneration and to establish the role of interstitial fibrosis or exhaustion of satellite cells in this process. Repeated degenerative-regenerative cycles were induced by the injection of bupivacaine (33 mg/kg), a myotoxic agent. Bupivacaine was injected weekly into the right tibialis anterior muscle of male, 8-week-old mdx (N = 20) and C57Bl/10 (control, N = 10) mice for 20 and 50 weeks. Three weeks after the last injection, the mice were killed and the proportion of regenerated fibers was counted and reported as a fibrosis index. Twenty weekly bupivacaine injections did not change the ability of mdx muscle to regenerate. However, after 50 weekly bupivacaine injections, there was a significant decrease in the regenerative response. There was no correlation between the inability to regenerate and the increase in interstitial fibrosis. These results show that after prolonged repeated cycles of degeneration-regeneration, mdx muscle loses its ability to regenerate because of the exhaustion of satellite cells, rather than because of an increase in interstitial fibrosis. This finding may be relevant to cell and gene therapy in the treatment of Duchenne muscular dystrophy.
Resumo:
Infarct-induced heart failure is usually associated with cardiac hypertrophy and decreased ß-adrenergic responsiveness. However, conflicting results have been reported concerning the density of L-type calcium current (I Ca(L)), and the mechanisms underlying the decreased ß-adrenergic inotropic response. We determined I Ca(L) density, cytoplasmic calcium ([Ca2+]i) transients, and the effects of ß-adrenergic stimulation (isoproterenol) in a model of postinfarction heart failure in rats. Left ventricular myocytes were obtained by enzymatic digestion 8-10 weeks after infarction. Electrophysiological recordings were obtained using the patch-clamp technique. [Ca2+]i transients were investigated via fura-2 fluorescence. ß-Adrenergic receptor density was determined by [³H]-dihydroalprenolol binding to left ventricle homogenates. Postinfarction myocytes showed a significant 25% reduction in mean I Ca(L) density (5.7 ± 0.28 vs 7.6 ± 0.32 pA/pF) and a 19% reduction in mean peak [Ca2+]i transients (0.13 ± 0.007 vs 0.16 ± 0.009) compared to sham myocytes. The isoproterenol-stimulated increase in I Ca(L) was significantly smaller in postinfarction myocytes (Emax: 63.6 ± 4.3 vs 123.3 ± 0.9% in sham myocytes), but EC50 was not altered. The isoproterenol-stimulated peak amplitude of [Ca2+]i transients was also blunted in postinfarction myocytes. Adenylate cyclase activation through forskolin produced similar I Ca(L) increases in both groups. ß-Adrenergic receptor density was significantly reduced in homogenates from infarcted hearts (Bmax: 93.89 ± 20.22 vs 271.5 ± 31.43 fmol/mg protein in sham myocytes), while Kd values were similar. We conclude that postinfarction myocytes from large infarcts display reduced I Ca(L) density and peak [Ca2+]i transients. The response to ß-adrenergic stimulation was also reduced and was probably related to ß-adrenergic receptor down-regulation and not to changes in adenylate cyclase activity.
Resumo:
The uncoupling protein UCP3 belongs to a family of mitochondrial carriers located in the inner mitochondrial membrane of certain cell types. It is expressed almost exclusively at high levels in skeletal muscle and its physiological role has not been fully determined in this tissue. In the present study we have addressed the possible interaction between a hypercaloric diet and thyroid hormone (T3), which are strong stimulators of UCP3 gene expression in skeletal muscle. Male Wistar rats weighing 180 ± 20 g were rendered hypothyroid by thyroidectomy and the addition of methimazole (0.05%; w/v) to drinking water after surgery. The rats were fed a hypercaloric cafeteria diet (68% carbohydrates, 13% protein and 18% lipids) for 10 days and sacrificed by decapitation. Subsequently, the gastrocnemius muscle was dissected, total RNA was isolated with Trizol and UCP3 gene expression was determined by Northern blotting using a specific probe. Statistical analysis was performed by one-way analysis of variance (ANOVA) followed by the Student-Newman-Keuls post-test. Skeletal muscle UCP3 gene expression was decreased by 60% in hypothyroid rats and UCP3 mRNA expression was increased 70% in euthyroid cafeteria-fed rats compared to euthyroid chow-fed animals, confirming previous studies. Interestingly, the cafeteria diet was unable to stimulate UCP3 gene expression in hypothyroid animals (40% lower as compared to euthyroid cafeteria-fed animals). The results show that a hypercaloric diet is a strong stimulator of UCP3 gene expression in skeletal muscle and requires T3 for an adequate action.
Resumo:
Mitochondrial mutations are responsible for at least 1% of the cases of hereditary deafness, but the contribution of each mutation has not yet been defined in African-derived or native American genetic backgrounds. A total of 203 unselected hearing-impaired patients were screened for the presence of the mitochondrial mutation A1555G in the 12S rRNA gene and mutations in the tRNA Ser(UCN) gene in order to assess their frequency in the ethnically admixed Brazilian population. We found four individuals with A1555G mutation (2%), which is a frequency similar to those reported for European-derived populations in unselected samples. On the other hand, complete sequencing of the tRNA Ser(UCN) did not reveal reported pathogenic substitutions, namely A7445G, 7472insC, T7510C, or T7511C. Instead, other rare substitutions were found such as T1291C, A7569G, and G7444A. To evaluate the significance of these findings, 110 "European-Brazilians" and 190 "African-Brazilians" unrelated hearing controls were screened. The T1291C, A7569G and G7444A substitutions were each found in about 1% (2/190) of individuals of African ancestry, suggesting that they are probably polymorphic. Our results indicate that screening for the A1555G mutation is recommended among all Brazilian deaf patients, while testing for mutations in the tRNA Ser(UCN) gene should be considered only when other frequent deafness-causing mutations have been excluded or in the presence of a maternal transmission pattern.
Resumo:
Most contacts with food protein and microbiota antigens occur at the level of the gut mucosa. In animal models where this natural stimulation is absent, such as germ-free and antigen-free mice, the gut-associated lymphoid tissue (GALT) and systemic immunological activities are underdeveloped. We have shown that food proteins play a critical role in the full development of the immune system. C57BL/6 mice weaned to a diet in which intact proteins are replaced by equivalent amounts of amino acids (Aa diet) have a poorly developed GALT as well as low levels of serum immunoglobulins (total Ig, IgG, and IgA, but not IgM). In the present study, we evaluated whether the introduction of a protein-containing diet in 10 adult Aa-fed C57BL/6 mice could restore their immunoglobulin levels and whether this recovery was dependent on the amount of dietary protein. After the introduction of a casein-containing diet, Aa-fed mice presented a fast recovery (after 7 days) of secretory IgA (from 0.33 to 0.75 mg/mL, while in casein-fed mice this value was 0.81 mg/mL) and serum immunoglobulin levels (from 5.39 to 10.25 mg/mL of total Ig). Five percent dietary casein was enough to promote the restoration of secretory IgA and serum immunoglobulin levels to a normal range after 30 days feeding casein diet (as in casein-fed mice - 15% by weight of diet). These data suggest that the defect detected in the immunoglobulin levels was a reversible result of the absence of food proteins as an antigenic stimulus. They also indicate that the deleterious consequences of malnutrition at an early age for some immune functions may be restored by therapeutic intervention later in life.
Resumo:
The purpose of the present study was to explore changes in rat colon motility, and determine the roles of calcium and inositol (1,4,5)-triphosphate (IP3) in colon dysmotility induced by multiple organ dysfunction syndrome (MODS) caused by bacteria peritonitis. The number of stools, the contractility of the muscle strips and the length of smooth muscle cells (SMC) in the colon, the concentration of calcium and IP3 in SMC, and serum nitric oxide were measured. Number of stools, fecal weight, IP3 concentration in SMC and serum nitric oxide concentration were 0.77 ± 0.52 pellets, 2.51 ± 0.39 g, 4.14 ± 2.07 pmol/tube, and 113.95 ± 37.89 µmol/L, respectively, for the MODS group (N = 11) vs 1.54 ± 0.64 pellets, 4.32 ± 0.57 g, 8.19 ± 3.11 pmol/tube, and 37.42 ± 19.56 µmol/L for the control group (N = 20; P < 0.05). After treatment with 0.1 mM acetylcholine and 0.1 M potassium chloride, the maximum contraction stress of smooth muscle strips, the length of SMC and the changes of calcium concentration were 593 ± 81 and 458 ± 69 g/cm³, 48.1 ± 11.8 and 69.2 ± 15.7 µM, 250 ± 70 and 167 ± 48%, respectively, for the control group vs 321 ± 53 and 284 ± 56 g/cm³, 65.1 ± 18.5 and 87.2 ± 23.7 µM, 127 ± 35 and 112 ± 35% for the MODS group (P < 0.05). Thus, colon contractility was decreased in MODS, a result possibly related to reduced calcium concentration and IP3 in SMC.
Resumo:
We investigated whether hepatic artery endothelium may be the earliest site of injury consequent to liver ischemia and reperfusion. Twenty-four heartworm-free mongrel dogs of either sex exposed to liver ischemia/reperfusion in vivo were randomized into four experimental groups (N = 6): a) control, sham-operated dogs, b) dogs subjected to 60 min of ischemia, c) dogs subjected to 30 min of ischemia and 60 min of reperfusion, and d) animals subjected to 45 min of ischemia and 120 min of reperfusion. The nitric oxide endothelium-dependent relaxation of hepatic artery rings contracted with prostaglandin F2a and exposed to increasing concentrations of acetylcholine, calcium ionophore A23187, sodium fluoride, phospholipase-C, poly-L-arginine, isoproterenol, and sodium nitroprusside was evaluated in organ-chamber experiments. Lipid peroxidation was estimated by malondialdehyde activity in liver tissue samples and by blood lactic dehydrogenase (LDH), serum aspartate aminotransferase (AST) and serum alanine aminotransferase (ALT) activities. No changes were observed in hepatic artery relaxation for any agonist tested. The group subjected to 45 min of ischemia and 120 min of reperfusion presented marked increases of serum aminotransferases (ALT = 2989 ± 1056 U/L and AST = 1268 ± 371 U/L; P < 0.01), LDH = 2887 ± 1213 IU/L; P < 0.01) and malondialdehyde in liver samples (0.360 ± 0.020 nmol/mgPT; P < 0.05). Under the experimental conditions utilized, no abnormal changes in hepatic arterial vasoreactivity were observed: endothelium-dependent and independent hepatic artery vasodilation were not impaired in this canine model of ischemia/reperfusion injury. In contrast to other vital organs and in the ischemia/reperfusion injury environment, dysfunction of the main artery endothelium is not the first site of reperfusion injury.
Resumo:
In mammals, damage to sensory receptor cells (hair cells) of the inner ear results in permanent sensorineural hearing loss. Here, we investigated whether postnatal mouse inner ear progenitor/stem cells (mIESCs) are viable after transplantation into the basal turns of neomycin-injured guinea pig cochleas. We also examined the effects of mIESC transplantation on auditory functions. Eight adult female Cavia porcellus guinea pigs (250-350g) were deafened by intratympanic neomycin delivery. After 7 days, the animals were randomly divided in two groups. The study group (n=4) received transplantation of LacZ-positive mIESCs in culture medium into the scala tympani. The control group (n=4) received culture medium only. At 2 weeks after transplantation, functional analyses were performed by auditory brainstem response measurement, and the animals were sacrificed. The presence of mIESCs was evaluated by immunohistochemistry of sections of the cochlea from the study group. Non-parametric tests were used for statistical analysis of the data. Intratympanic neomycin delivery damaged hair cells and increased auditory thresholds prior to cell transplantation. There were no significant differences between auditory brainstem thresholds before and after transplantation in individual guinea pigs. Some mIESCs were observed in all scalae of the basal turns of the injured cochleas, and a proportion of these cells expressed the hair cell marker myosin VIIa. Some transplanted mIESCs engrafted in the cochlear basilar membrane. Our study demonstrates that transplanted cells survived and engrafted in the organ of Corti after cochleostomy.