12 resultados para Visual pattern recognition
em Scielo Saúde Pública - SP
Resumo:
Software for pattern recognition of the larvae of mosquitoes Aedes aegypti and Aedes albopictus, biological vectors of dengue and yellow fever, has been developed. Rapid field identification of larva using a digital camera linked to a laptop computer equipped with this software may greatly help prevention campaigns.
Resumo:
The spleen plays a crucial role in the development of immunity to malaria, but the role of pattern recognition receptors (PRRs) in splenic effector cells during malaria infection is poorly understood. In the present study, we analysed the expression of selected PRRs in splenic effector cells from BALB/c mice infected with the lethal and non-lethal Plasmodium yoelii strains 17XL and 17X, respectively, and the non-lethal Plasmodium chabaudi chabaudi AS strain. The results of these experiments showed fewer significant changes in the expression of PRRs in AS-infected mice than in 17X and 17XL-infected mice. Mannose receptor C type 2 (MRC2) expression increased with parasitemia, whereas Toll-like receptors and sialoadhesin (Sn) decreased in mice infected with P. chabaudi AS. In contrast, MRC type 1 (MRC1), MRC2 and EGF-like module containing mucin-like hormone receptor-like sequence 1 (F4/80) expression decreased with parasitemia in mice infected with 17X, whereas MRC1 an MRC2 increased and F4/80 decreased in mice infected with 17XL. Furthermore, macrophage receptor with collagenous structure and CD68 declined rapidly after initial parasitemia. SIGNR1 and Sn expression demonstrated minor variations in the spleens of mice infected with either strain. Notably, macrophage scavenger receptor (Msr1) and dendritic cell-associated C-type lectin 2 expression increased at both the transcript and protein levels in 17XL-infected mice with 50% parasitemia. Furthermore, the increased lethality of 17X infection in Msr1 -/- mice demonstrated a protective role for Msr1. Our results suggest a dual role for these receptors in parasite clearance and protection in 17X infection and lethality in 17XL infection.
Resumo:
Monitoring of sewage sludge has proved the presence of many polar anthropogenic pollutants since LC/MS techniques came into routine use. While advanced techniques may improve characterizations, flawed sample processing procedures, however, may disturb or disguise the presence and fate of many target compounds present in this type of complex matrix before analytical process starts. Freeze-drying or oven-drying, in combination with centrifugation or filtration as sample processing techniques were performed followed by visual pattern recognition of target compounds for assessment of pretreatment processes. The results shown that oven-drying affected the sludge characterization, while freeze-drying led to less analytical misinterpretations.
Resumo:
The chemical composition of apple juices may be used to discriminate between the varieties for consumption and those for raw material. Fuji and Gala have a chemical pattern that can be used for this classification. Multivariate methods correlate independent continuous chemical descriptors with the categorical apple variety. Three main descriptors of apple juice were selected: malic acid, total reducing sugar and total phenolic compounds. A chemometric approach, employing PCA and SIMCA, was used to classify apple juice samples. PCA was performed with 24 juices from Fuji and Gala, and SIMCA, with 15 juices. The exploratory and predictive models recognized 88% and 64%, respectively, as belonging to a mixed domain. The apple juice from commercial fruits shows a pattern related to cv. Fuji and Gala with boundaries from 0.18 to 0.389 g.100 mL-1 (malic acid), from 8.65 to 15.18 g.100 mL-1 (total reducing sugar) and from 100 to 400 mg.L-1 (total phenolic compounds), but such boundaries were slightly shorter in the remaining set of commercial apple juices, specifically from 0.16 to 0.36 g.100 mL-1, from 9.25 to 15.5 g.100 mL-1 and from 180 to 606 mg.L-1 for acidity, reducing sugar and phenolic compounds, respectively, representing the acid, sweet and bitter tastes.
Resumo:
Over the past three decades, pedotransfer functions (PTFs) have been widely used by soil scientists to estimate soils properties in temperate regions in response to the lack of soil data for these regions. Several authors indicated that little effort has been dedicated to the prediction of soil properties in the humid tropics, where the need for soil property information is of even greater priority. The aim of this paper is to provide an up-to-date repository of past and recently published articles as well as papers from proceedings of events dealing with water-retention PTFs for soils of the humid tropics. Of the 35 publications found in the literature on PTFs for prediction of water retention of soils of the humid tropics, 91 % of the PTFs are based on an empirical approach, and only 9 % are based on a semi-physical approach. Of the empirical PTFs, 97 % are continuous, and 3 % (one) is a class PTF; of the empirical PTFs, 97 % are based on multiple linear and polynomial regression of n th order techniques, and 3 % (one) is based on the k-Nearest Neighbor approach; 84 % of the continuous PTFs are point-based, and 16 % are parameter-based; 97 % of the continuous PTFs are equation-based PTFs, and 3 % (one) is based on pattern recognition. Additionally, it was found that 26 % of the tropical water-retention PTFs were developed for soils in Brazil, 26 % for soils in India, 11 % for soils in other countries in America, and 11 % for soils in other countries in Africa.
Resumo:
The main obstacle to the use of compost from urban waste in agriculture is the presence of heavy metals. Once in the soil, their effect is accumulative and they may contaminate crops and water. The present study reports the evaluation of the chemical distributions of Cu, Pb, Mn and Zn in three different sized fractions (unsieved, < 1,18mm and > 1,18mm) of compost, by means of a sequencial extraction procedure and a chemometric analysis of the total content of all metals in each fraction. The pattern recognition methods showed significant differences in total heavy metal contents for the different fractions. The finest one was the most contaminated. Meanwhile, this fraction presented lower amounts of metals in avaliable forms. This behavior can be attributed to the presence of metal particles in their elemental states in this fraction.
Resumo:
Inductively Coupled Plasma Optical Emission Spectrometry was used to determine Ca, Mg, Mn, Fe, Zn and Cu in samples of processed and natural coconut water. The sample preparation consisted in a filtration step followed by a dilution. The analysis was made employing optimized instrumental parameters and the results were evaluated using methods of Pattern Recognition. The data showed common concentration values for the analytes present in processed and natural samples. Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) indicated that the samples of different kinds were statistically different when the concentrations of all the analytes were considered simultaneously.
Resumo:
Chemometric activities in Brazil are described according to three phases: before the existence of microcomputers in the 1970s, through the initial stages of microcomputer use in the 1980s and during the years of extensive microcomputer applications of the ´90s and into this century. Pioneering activities in both the university and industry are emphasized. Active research areas in chemometrics are cited including experimental design, pattern recognition and classification, curve resolution for complex systems and multivariate calibration. New trends in chemometrics, especially higher order methods for treating data, are emphasized.
Resumo:
An activity for introducing hierarchical cluster analysis (HCA) and principal component analysis (PCA) during the Instrumental Analytical Chemistry course is presented. The posed problem involves the discrimination of mineral water samples according to their geographical origin. Thirty-seven samples of 9 different brands were considered and the results from the determination of Na, K, Mg, Ca, Sr and Ba were taken into account. Non-supervised methods for pattern recognition were explored to construct a dendrogram, score and loading plots. The devised activity can be adopted for introducing Chemometrics devoted to data handling, stressing its importance in the context of modern Analytical Chemistry.
Resumo:
Classification of biodiesel by oilseed type using pattern recognition techniques is described. The spectra of the samples were performed in the Visible region, requiring noise removal by use of a first derivative by the Savitzky-Golay method, employing a second-order polynomial and a window of 21 points. The characterization of biodiesel was performed using HCA, PCA and SIMCA. For HCA and PCA methods, one can observe the separation of each group of biodiesel in a spectral region of 405-500 nm. SIMCA model was used in a test group composed of 28 spectral measurements and no errors are obtained.
Resumo:
This study evaluated the expression of CD14, toll-like receptor (TLR) 2 and TLR4 on the surface of milk neutrophils in bovine mammary glands infected with Corynebacterium bovis. Here, we used 23 culture-negative control quarters with no abnormal secretion on the strip cup test and milk somatic cell count lower than 1x105 cells/mL, and 14 C. bovis infected quarters. The identification of neutrophils, as well as, the percentage of neutrophils that expressed CD14, TLR2 and TLR4 were analyzed by flow cytometry using monoclonal antibodies. The present study encountered no significant difference in the percentages of milk neutrophils that expressed TLR2 and TLR4 or in the expression of TLR4 by milk neutrophils. Conversely, a lower median fluorescence intensity of TLR2 in milk neutrophils was observed in C. bovis-infected quarters. The percentage of neutrophils that expressed CD14 and the median fluorescence intensity of CD14 in milk neutrophils was also lower in C. bovis-infected quarters.
Resumo:
High resolution proton nuclear magnetic resonance spectroscopy (¹H MRS) can be used to detect biochemical changes in vitro caused by distinct pathologies. It can reveal distinct metabolic profiles of brain tumors although the accurate analysis and classification of different spectra remains a challenge. In this study, the pattern recognition method partial least squares discriminant analysis (PLS-DA) was used to classify 11.7 T ¹H MRS spectra of brain tissue extracts from patients with brain tumors into four classes (high-grade neuroglial, low-grade neuroglial, non-neuroglial, and metastasis) and a group of control brain tissue. PLS-DA revealed 9 metabolites as the most important in group differentiation: γ-aminobutyric acid, acetoacetate, alanine, creatine, glutamate/glutamine, glycine, myo-inositol, N-acetylaspartate, and choline compounds. Leave-one-out cross-validation showed that PLS-DA was efficient in group characterization. The metabolic patterns detected can be explained on the basis of previous multimodal studies of tumor metabolism and are consistent with neoplastic cell abnormalities possibly related to high turnover, resistance to apoptosis, osmotic stress and tumor tendency to use alternative energetic pathways such as glycolysis and ketogenesis.