48 resultados para Virus-like particles
em Scielo Saúde Pública - SP
Resumo:
A total of 138 patients with the age of 4 months to 57 years were attended in different hospitals of São Paulo State with aseptic meningitis. A probable new agent was isolated from the cerebrospinal fluid of 35 of 53 specimens examined. Replication of the agent with similar characteristics was detected by CPE produced in the MDCK cell line. Virus-like particles measuring about 40 nm in diameter were observed by negative staining electron microscopy. No hemaglutinating activity was detected at pH 7.2 by using either human, guinea pig, chicken and at pH ranged 6.0 - 7.2 with goose red blood cells. The agent was not pathogenic to newborn or adult mice. Virus infectivity as measured by CPE was sensitive to chloroform and not inhibited by BuDR, suggesting that agent is an enveloped virus with RNA genome.
Resumo:
Dengue virus replication in mosquito cell cultures was observed by electron microscopy in one fatal and 40 classical isolates from a dengue type 2 outbreak in Rio de Janeiro and compared with the prototype New Guinea C strain. All the Brazilian isolates presented, beside the classical structured dengue virus particles, fuzzy coated virus-like particles, never observed in thereferencial New Guinea C virus strain. more numerous DEN-2 virus particles, fuzzy coated virus-like particles, defective virus particles and smooth membrane structures inside the rough endoplasmic reticulum characterized the unique fatal isolate examined.
Resumo:
Toddia França, 1912 under the light microscope occurs as inclusion corpuscles in the cytoplasm of erythrocytes of cold-blooded vertebrates sometimes accompanied by crystalloid bodies. Its position among the protozoans or the viruses has been discussed by some authors, but remained unclear. To elucidate this problem we studied Toddia from a Brazilian frog (Leptodactylus ocellatus) by electron microscopy. In the cytoplasm of the infected cells we found no protozoan, but rather virus-like particles often hexagonal in outline, averaging 195 nm excluding their two involving membranes, and presenting a central area of variable electron density. Particles at different stages of development were generally found around or on area lighter density than the cytoplasm. which resembled a virus synthesis site. At high magnification, the nuclear or cytoplasmic crystals allied to Toddia resembled the crystalline lattice of the inclusion bodies associated with the polyhedrosis viruses and poxviruses from insects, of the capsules of granulosis viruses and of other protein crystals in ultrathin sections. Cytochemical tests in Toddia corpuscles displayed exclusively the presence of deoxyribonucleic acid. These findings indicate that Toddia is not a protozoan and demonstrate that it is in all probability a viral inclusion corpuscle. Taking into account the nucleic acid type found in its structure (DNA) and the hexagonal shape usually shown in ultrathin sections by its component particles, which have a cytoplasmic site of synthesis and assembly, we tentatively relate Toddia with the so-called "Icosahedral Cytoplasmic Deoxyriboviruses". We believe that the present paper gives the first report of virus-like particles in L. ocellatus.
Resumo:
Culture forms of four strains of Endotrypanum (E. schaudinni and E. monterogeii) were processed for transmission electron microscopy and analyzed at the ultrastructural level. Quantitative data about some cytoplasmic organelles were obeined by stereology. All culture forms were promastigotes. In their cytoplasm four different organelles could be found: lipid inclusions (0,2-0,4 µm in diameter), mebrane-bounded vacuoles (0.10-0,28 µm in diameter), glycosomes (0,2-0,3 µm in diameter), and the mitochondrion. The kenetoplast appears as a thin band, except for the strain IM201, which possesses a broader structure, and possibly is not a member of this genus. Clusters of virus-like particles were seen in the cytoplasm of the strain LV88. The data obtained show that all strains have the typical morphological feature of the trypanosomatids. Only strain IM201 could be differentiated from the others, due to its larger kenetoplast-DNA network and its large mitochondrial and glycosomal relative volume. The morphometrical data did not allow the differentiation between E. schaudinni (strains IM217 and M6226) and E. monterogeii (strain LV88).
Resumo:
Two kinds of small extrachromosomal nucleic acid elements were found in the bovine babesias, Babesia bovis and B. bigemina. One element with an apparent size of 5.5 kilobase pairs (kbp) is a double stranded RNA related to virus like particles. Another molecule is a double stranded DNA with a molecular size of about 6.2 kbp. Southern blot comparison of restriction DNA fragments of the latter molecule, which is present in both B. bovis and B. bigemina is described.
Resumo:
CD8+ T cells have been implicated as critical effector cells in protection against the pre-erythrocytic stage of malaria in mice and humans following irradiated sporozoite immunization. Immunization experiments in animal models by several investigators have suggested different strategies for vaccination against malaria and many of the targets from liver stage malaria antigens have been shown to be immunogenic and to protect mice from the sporozoite challenge. Several prime/boost protocols with replicating vectors, such as vaccinia/influenza, with non-replicating vectors, such as recombinant particles derived from yeast transposon (Ty-particles) and modified vaccinia virus Ankara, and DNA, significantly enhanced CD8+ T cell immunogenicity and also the protective efficacy against the circumsporosoite protein of Plasmodium berghei and P. yeti. Based on these experimental results the development of a CD8+ T cell inducing vaccine has moved forward from epitope identification to planning stages of safety and immunogenicity trials of candidate vaccines.
Resumo:
Foi estudada a ultra-estrutura foliar das solanáceas Nicotiana glutinosa L., Lycopersicon pimpinellifolium L. e Physalis angulata L. inoculadas com o vírus da necrose branca do tomateiro (VNBT - Tymovirus). As plantas mantidas em casa-de-vegetação com temperatura constante de 25 °C foram inoculadas quando apresentavam três a quatro folhas totalmente expandidas. Quinze dias após a inoculação, foram coletadas amostras do terço médio do limbo da 3ª ou da 4ª folha a partir do ápice. As amostras foram preparadas para análise em microscopia eletrônica de transmissão segundo técnicas convencionais. A análise ultra-estrutural das células do clorênquima revelou principalmente vesiculação e vacuolação dos cloroplastos e de mitocôndrias, além da ocorrência de corpos multivesiculares e ligeira dilatação dos plasmodesmos em N. glutinosa e L. pimpinellifolium. Nestas duas espécies foram observadas "virus-like-particles" no citoplasma e nos vacúolos. Plantas de P. angulata não mostraram alterações de ultra-estrutura. As observações macroscópicas, os testes de retroinoculação e as análises ultra-estruturais revelaram sintomas locais e sistêmicos em N. glutinosa, latência em L. pimpinellifolium e imunidade em P. angulata.
Resumo:
Human papillomavirus genomes are classified into molecular variants when they present more than 98% of similarity to the prototype sequence within the L1 gene. Comparative nucleotide sequence analyses of these viruses have elucidated some features of their phylogenetic relationship. In addition, human papillomavirus intratype variability has also been used as an important tool in epidemiological studies of viral transmission, persistence and progression to clinically relevant cervical lesions. Until the present, little has been published concerning the functional significance of molecular variants. It has been shown that nucleotide variability within the long control region leads to differences in the binding affinity of some cellular transcriptional factors and to the enhancement of the expression of E6 and E7 oncogenes. Furthermore, in vivo and in vitro studies revealed differences in E6 and E7 biochemical and biological properties among molecular variants. Nevertheless, further correlation with additional functional information is needed to evaluate the significance of genome intratypic variability. These results are also important for the development of vaccines and to determine the extent to which immunization with L1 virus-like particles of one variant could induce antibodies that cross-neutralize other variants.
Resumo:
Human papillomavirus (HPV) infection is the most common sexually transmitted disease in the world and is related to the etiology of cervical cancer. The most common high-risk HPV types are 16 and 18; however, the second most prevalent type in the Midwestern region of Brazil is HPV-33. New vaccine strategies against HPV have shown that virus-like particles (VLP) of the major capsid protein (L1) induce efficient production of antibodies, which confer protection against the same viral type. The methylotrophic yeast Pichia pastoris is an efficient and inexpensive expression system for the production of high levels of heterologous proteins stably using a wild-type gene in combination with an integrative vector. It was recently demonstrated that P. pastoris can produce the HPV-16 L1 protein by using an episomal vector associated with the optimized L1 gene. However, the use of an episomal vector is not appropriate for protein production on an industrial scale. In the present study, the vectors were integrated into the Pichia genome and the results were positive for L1 gene transcription and protein production, both intracellularly and in the extracellular environment. Despite the great potential for expression by the P. pastoris system, our results suggest a low yield of L1 recombinant protein, which, however, does not make this system unworkable. The achievement of stable clones containing the expression cassettes integrated in the genome may permit optimizations that could enable the establishment of a platform for the production of VLP-based vaccines.
Resumo:
In this work we report four different destructive and non-destructive methods for detecting picorna-like virus particles in triatomines. The methods are based on direct observation under transmission electron microscope and they consist of four ways to prepare samples of presumable infected material. The samples are prepared processing dead or alive insect parts, or even dry or fresh insect feces. The methods can be used as analytical or preparative techniques, for quantifying virus infection and checking virus integrity as well. In this work the four methods are applied in order to detect Triatoma virus (TrV) particles in T. infestans colonies.
Resumo:
Histological and ultrastructural alterations in lung tissue of BALB/c mice infected with dengue virus serotype 2 (non-neuroadapted), by intraperitoneal and intravenous routes were analyzed. Lung tissues were processed following the standard techniques for photonic and electron transmission microscopies. Histopathological and ultrastructural studies showed interstitial pneumonia, characterized by the presence of mononuclear cells. In the mouse model, the dengue virus serotype 2 seems to led to a transient inflammatory process without extensive damage to the interalveolar septa, but caused focal alterations of the blood-exchange barrier. Endothelial cells of blood capillaries exhibited phyllopodia suggesting activation by presence of dengue virus. Morphometrical analysis of mast cells showed an expressive increase of the number of these cells in peribronchiolar spaces and adjacent areas to the interalveolar septa. Alveolar macrophages showed particles dengue virus-like inside rough endoplasmic reticulum and Golgi complex, suggesting viral replication. The tissue alterations observed in our experimental model were similar to the observed in human cases of dengue fever and dengue hemorrhagic fever. Our results show that BALB/c mice are permissive host for dengue virus serotype 2 replication and therefore provides an useful model to study of morphological aspects of dengue virus infection.
Resumo:
The cytopathology of grapevine (Vitis spp.) callus tissue infected with Grapevine leafroll-associated virus 3 (GLRaV-3), genus Vitivirus was studied in order to investigate the usefulness of callus cultures to study grapevine leafroll-associated viruses. Ultrathin sections were made from in vitro callus obtained from stems and shoots of GLRaV-3 infected grapevine plants. Callus was composed of two types of tissue. Translucent, soft callus was formed and composed of large loosely arranged cells, containing big vacuoles and a thin layer of cytoplasm. Other parts of the callus were brown-coloured and composed of small compactly arranged cells, which showed flexuous and rod-shaped closterovirus-like particles, with 10-12 nm in diameter, at higher magnifications. Groups of vesicles formed by a single membrane were also observed, with sizes ranging from 50-200 nm, containing fine fibrillar material, also typical of closterovirus infections. Virus concentration was monitored by Immunosorbent electron microscopy (ISEM) tests, which showed that in vitro culture of callus tissue from grapevine infected plants, could be used to study the GLRaV viruses through many successive generations, despite the decline in virus concentration after repeated transfers. No virus particles were observed in callus tissue obtained from healthy grapevines.
Resumo:
A citrus tatter leaf isolate (CTLV-Cl) of Apple stem grooving virus (ASGV) has been found to be associated with a fruit rind intumescence in Cleopatra mandarin (Citrus reshni) in Limeira (SP). The CTLV-Cl was mechanically transmitted to the main experimental herbaceous hosts of CTLV. Chenopodium quinoa and C. amaranticolor reacted with local lesions and systemic symptoms while other test plants reacted somewhat differently than what is reported for CTLV. A pair of primers designed for specific detection of ASGV and CTLV amplified the expected 801 bp fragment from the CTLV-Cl-infected plants. Typical capillovirus-like particles were observed by the electron microscope in experimentally infected C. quinoa and C. amaranticolor leaves.
Resumo:
In the regions of Campinas and Sumaré, São Paulo, Brazil, hidroponically grown crops of Lettuce (Lactuca sativa) cv. Verônica, which showed virus-like symptoms were examined by electron microscope, biological, serological and molecular tests. Pleomorphic, enveloped particles (80-100 nm in diameter) were always detected in these samples. Experimentally inoculated host plants, including lettuce, reacted with tospoviruses-induced symptoms. Some differences were observed in Gomphrena globosa, which reacted by showing local lesions and systemic mosaic. Two isolates of Tomato chlorotic spot virus (TCSV) were identified by DAS-ELISA and by RT-PCR. The sequencing and alignment of the RT-PCR coat protein amplified fragments have indicated a high degree of homology with the TCSV sequences stored in the GenBank. This is the first report of losses due to a virus from the genus Tospovirus in commercial hydroponic lettuce crops in Brazil. Further epidemiological studies are needed for better understanding the spread of the virus in hydroponic crops, since Tomato spotted wilt virus (TSWV) is reported to spread through the nutritive solution.
Resumo:
ELISA in situ can be used to titrate hepatitis A virus (HAV) particles and real-time polymerase chain reaction (RT-PCR) has been shown to be a fast method to quantify the HAV genome. Precise quantification of viral concentration is necessary to distinguish between infectious and non-infectious particles. The purpose of this study was to compare cell culture and RT-PCR quantification results and determine whether HAV genome quantification can be correlated with infectivity. For this purpose, three stocks of undiluted, five-fold diluted and 10-fold diluted HAV were prepared to inoculate cells in a 96-well plate. Monolayers were then incubated for seven, 10 and 14 days and the correlation between the ELISA in situ and RT-PCR results was evaluated. At 10 days post-incubation, the highest viral load was observed in all stocks of HAV via RT-PCR (10(5) copies/mL) (p = 0.0002), while ELISA revealed the highest quantity of particles after 14 days (optical density = 0.24, p < 0.001). At seven days post-infection, there was a significant statistical correlation between the results of the two methods, indicating equivalents titres of particles and HAV genome during this period of infection. The results reported here indicate that the duration of growth of HAV in cell culture must be taken into account to correlate genome quantification with infectivity.