33 resultados para Very long instruction word (VLIW)

em Scielo Saúde Pública - SP


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background: BNP has been extensively evaluated to determine short- and intermediate-term prognosis in patients with acute coronary syndrome, but its role in long-term mortality is not known. Objective: To determine the very long-term prognostic role of B-type natriuretic peptide (BNP) for all-cause mortality in patients with non-ST segment elevation acute coronary syndrome (NSTEACS). Methods: A cohort of 224 consecutive patients with NSTEACS, prospectively seen in the Emergency Department, had BNP measured on arrival to establish prognosis, and underwent a median 9.34-year follow-up for all-cause mortality. Results: Unstable angina was diagnosed in 52.2%, and non-ST segment elevation myocardial infarction, in 47.8%. Median admission BNP was 81.9 pg/mL (IQ range = 22.2; 225) and mortality rate was correlated with increasing BNP quartiles: 14.3; 16.1; 48.2; and 73.2% (p < 0.0001). ROC curve disclosed 100 pg/mL as the best BNP cut-off value for mortality prediction (area under the curve = 0.789, 95% CI= 0.723-0.854), being a strong predictor of late mortality: BNP < 100 = 17.3% vs. BNP ≥ 100 = 65.0%, RR = 3.76 (95% CI = 2.49-5.63, p < 0.001). On logistic regression analysis, age >72 years (OR = 3.79, 95% CI = 1.62-8.86, p = 0.002), BNP ≥ 100 pg/mL (OR = 6.24, 95% CI = 2.95-13.23, p < 0.001) and estimated glomerular filtration rate (OR = 0.98, 95% CI = 0.97-0.99, p = 0.049) were independent late-mortality predictors. Conclusions: BNP measured at hospital admission in patients with NSTEACS is a strong, independent predictor of very long-term all-cause mortality. This study allows raising the hypothesis that BNP should be measured in all patients with NSTEACS at the index event for long-term risk stratification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: The expansion of precarious employment in OECD countries has been widely associated with negative health and safety effects. Although many shiftworkers are precariously employed, shiftwork research has concentrated on full-time workers in continuing employment. This paper examines the impact of precarious employment on working hours, work-life conflict and health by comparing casual employees to full-time, "permanent" employees working in the same occupations and workplaces. METHODS: Thirty-nine convergent interviews were conducted in two five-star hotels. The participants included 26 full-time and 13 casual (temporary) employees. They ranged in age from 19 to 61 years and included 17 females and 22 males. Working hours ranged from zero to 73 hours per week. RESULTS: Marked differences emerged between the reports of casual and full-time employees about working hours, work-life conflict and health. Casuals were more likely to work highly irregular hours over which they had little control. Their daily and weekly working hours ranged from very long to very short according to organisational requirements. Long working hours, combined with low predictability and control, produced greater disruption to family and social lives and poorer work-life balance for casuals. Uncoordinated hours across multiple jobs exacerbated these problems in some cases. Health-related issues reported to arise from work-life conflict included sleep disturbance, fatigue and disrupted exercise and dietary regimes. CONCLUSIONS:This study identified significant disadvantages of casual employment. In the same hotels, and doing largely the same jobs, casual employees had less desirable and predictable work schedules, greater work-life conflict and more associated health complaints than "permanent" workers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Miracetyma etimaruyagen. et sp. n. is proposed from the gills filaments of Curimata cyprinoides(Linnaeus, 1758), Potamorhina latior(Spix, 1829) and Psectrogaster essequibensis(Gunther, 1864). The species of the new genus is characterized by having a more complex latching antenna. The claw is greatly reduced and has a groove; the third segment has one or two grooves; the first, second and third segments have one or two cuticular extensions. The legs have pectinate setae and the first endopod is greatly modified, very long, and without setae. The first segment of the first endopod is large, strong and elongate and the second segment is subcylindrical, slender and elongate. These modifications imply in a loss of swimming capacity which is linked to secure fixation on the gill filament. As a result, the leg morphology has evolved other functions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Drug-eluting stents have been used in daily practice since 2002, with the clear advantages of reducing the risk of target vessel revascularization and an impressive reduction in restenosis rate by 50%-70%. However, the occurrence of a late thrombosis can compromise long-term results, particularly if the risks of this event were sustained. In this context, a registry of clinical cases gains special value. Objective: To evaluate the efficacy and safety of drug-eluting stents in the real world. Methods: We report on the clinical findings and 8-year follow-up parameters of all patients that underwent percutaneous coronary intervention with a drug-eluting stent from January 2002 to April 2007. Drug-eluting stents were used in accordance with the clinical and interventional cardiologist decision and availability of the stent. Results: A total of 611 patients were included, and clinical follow-up of up to 8 years was obtained for 96.2% of the patients. Total mortality was 8.7% and nonfatal infarctions occurred in 4.3% of the cases. Target vessel revascularization occurred in 12.4% of the cases, and target lesion revascularization occurred in 8% of the cases. The rate of stent thrombosis was 2.1%. There were no new episodes of stent thrombosis after the fifth year of follow-up. Comparative subanalysis showed no outcome differences between the different types of stents used, including Cypher®, Taxus®, and Endeavor®. Conclusion: These findings indicate that drug-eluting stents remain safe and effective at very long-term follow-up. Patients in the "real world" may benefit from drug-eluting stenting with excellent, long-term results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In thee present paper the classical concept of the corpuscular gene is dissected out in order to show the inconsistency of some genetical and cytological explanations based on it. The author begins by asking how do the genes perform their specific functions. Genetists say that colour in plants is sometimes due to the presence in the cytoplam of epidermal cells of an organic complex belonging to the anthocyanins and that this complex is produced by genes. The author then asks how can a gene produce an anthocyanin ? In accordance to Haldane's view the first product of a gene may be a free copy of the gene itself which is abandoned to the nucleus and then to the cytoplasm where it enters into reaction with other gene products. If, thus, the different substances which react in the cell for preparing the characters of the organism are copies of the genes then the chromosome must be very extravagant a thing : chain of the most diverse and heterogeneous substances (the genes) like agglutinins, precipitins, antibodies, hormones, erzyms, coenzyms, proteins, hydrocarbons, acids, bases, salts, water soluble and insoluble substances ! It would be very extrange that so a lot of chemical genes should not react with each other. remaining on the contrary, indefinitely the same in spite of the possibility of approaching and touching due to the stato of extreme distension of the chromosomes mouving within the fluid medium of the resting nucleus. If a given medium becomes acid in virtue of the presence of a free copy of an acid gene, then gene and character must be essentially the same thing and the difference between genotype and phenotype disappears, epigenesis gives up its place to preformation, and genetics goes back to its most remote beginnings. The author discusses the complete lack of arguments in support of the view that genes are corpuscular entities. To show the emharracing situation of the genetist who defends the idea of corpuscular genes, Dobzhansky's (1944) assertions that "Discrete entities like genes may be integrated into systems, the chromosomes, functioning as such. The existence of organs and tissues does not preclude their cellular organization" are discussed. In the opinion of the present writer, affirmations as such abrogate one of the most important characteristics of the genes, that is, their functional independence. Indeed, if the genes are independent, each one being capable of passing through mutational alterations or separating from its neighbours without changing them as Dobzhansky says, then the chromosome, genetically speaking, does not constitute a system. If on the other hand, theh chromosome be really a system it will suffer, as such, the influence of the alteration or suppression of the elements integrating it, and in this case the genes cannot be independent. We have therefore to decide : either the chromosome is. a system and th genes are not independent, or the genes are independent and the chromosome is not a syntem. What cannot surely exist is a system (the chromosome) formed by independent organs (the genes), as Dobzhansky admits. The parallel made by Dobzhansky between chromosomes and tissues seems to the author to be inadequate because we cannot compare heterogeneous things like a chromosome considered as a system made up by different organs (the genes), with a tissue formed, as we know, by the same organs (the cells) represented many times. The writer considers the chromosome as a true system and therefore gives no credit to the genes as independent elements. Genetists explain position effects in the following way : The products elaborated by the genes react with each other or with substances previously formed in the cell by the action of other gene products. Supposing that of two neighbouring genes A and B, the former reacts with a certain substance of the cellular medium (X) giving a product C which will suffer the action, of the latter (B). it follows that if the gene changes its position to a place far apart from A, the product it elaborates will spend more time for entering into contact with the substance C resulting from the action of A upon X, whose concentration is greater in the proximities of A. In this condition another gene produtc may anticipate the product of B in reacting with C, the normal course of reactions being altered from this time up. Let we see how many incongruencies and contradictions exist in such an explanation. Firstly, it has been established by genetists that the reaction due.to gene activities are specific and develop in a definite order, so that, each reaction prepares the medium for the following. Therefore, if the medium C resulting from the action of A upon x is the specific medium for the activity of B, it follows that no other gene, in consequence of its specificity, can work in this medium. It is only after the interference of B, changing the medium, that a new gene may enter into action. Since the genotype has not been modified by the change of the place of the gene, it is evident that the unique result we have to attend is a little delay without seious consequence in the beginning of the reaction of the product of B With its specific substratum C. This delay would be largely compensated by a greater amount of the substance C which the product of B should found already prepared. Moreover, the explanation did not take into account the fact that the genes work in the resting nucleus and that in this stage the chromosomes, very long and thin, form a network plunged into the nuclear sap. in which they are surely not still, changing from cell to cell and In the same cell from time to time, the distance separating any two genes of the same chromosome or of different ones. The idea that the genes may react directly with each other and not by means of their products, would lead to the concept of Goidschmidt and Piza, in accordance to which the chromosomes function as wholes. Really, if a gene B, accustomed to work between A and C (as for instance in the chromosome ABCDEF), passes to function differently only because an inversion has transferred it to the neighbourhood of F (as in AEDOBF), the gene F must equally be changed since we cannot almH that, of two reacting genes, only one is modified The genes E and A will be altered in the same way due to the change of place-of the former. Assuming that any modification in a gene causes a compensatory modification in its neighbour in order to re-establich the equilibrium of the reactions, we conclude that all the genes are modified in consequence of an inversion. The same would happen by mutations. The transformation of B into B' would changeA and C into A' and C respectively. The latter, reacting withD would transform it into D' and soon the whole chromosome would be modified. A localized change would therefore transform a primitive whole T into a new one T', as Piza pretends. The attraction point-to-point by the chromosomes is denied by the nresent writer. Arguments and facts favouring the view that chromosomes attract one another as wholes are presented. A fact which in the opinion of the author compromises sereously the idea of specific attraction gene-to-gene is found inthe behavior of the mutated gene. As we know, in homozygosis, the spme gene is represented twice in corresponding loci of the chromosomes. A mutation in one of them, sometimes so strong that it is capable of changing one sex into the opposite one or even killing the individual, has, notwithstading that, no effect on the previously existing mutual attraction of the corresponding loci. It seems reasonable to conclude that, if the genes A and A attract one another specifically, the attraction will disappear in consequence of the mutation. But, as in heterozygosis the genes continue to attract in the same way as before, it follows that the attraction is not specific and therefore does not be a gene attribute. Since homologous genes attract one another whatever their constitution, how do we understand the lack cf attraction between non homologous genes or between the genes of the same chromosome ? Cnromosome pairing is considered as being submitted to the same principles which govern gametes copulation or conjugation of Ciliata. Modern researches on the mating types of Ciliata offer a solid ground for such an intepretation. Chromosomes conjugate like Ciliata of the same variety, but of different mating types. In a cell there are n different sorts of chromosomes comparable to the varieties of Ciliata of the same species which do not mate. Of each sort there are in the cell only two chromosomes belonging to different mating types (homologous chromosomes). The chromosomes which will conjugate (belonging to the same "variety" but to different "mating types") produce a gamone-like substance that promotes their union, being without action upon the other chromosomes. In this simple way a single substance brings forth the same result that in the case of point-to-point attraction would be reached through the cooperation of as many different substances as the genes present in the chromosome. The chromosomes like the Ciliata, divide many times before they conjugate. (Gonial chromosomes) Like the Ciliata, when they reach maturity, they copulate. (Cyte chromosomes). Again, like the Ciliata which aggregate into clumps before mating, the chrorrasrmes join together in one side of the nucleus before pairing. (.Synizesis). Like the Ciliata which come out from the clumps paired two by two, the chromosomes leave the synizesis knot also in pairs. (Pachytene) The chromosomes, like the Ciliata, begin pairing at any part of their body. After some time the latter adjust their mouths, the former their kinetochores. During conjugation the Ciliata as well as the chromosomes exchange parts. Finally, the ones as the others separate to initiate a new cycle of divisions. It seems to the author that the analogies are to many to be overlooked. When two chemical compounds react with one another, both are transformed and new products appear at the and of the reaction. In the reaction in which the protoplasm takes place, a sharp difference is to be noted. The protoplasm, contrarily to what happens with the chemical substances, does not enter directly into reaction, but by means of products of its physiological activities. More than that while the compounds with Wich it reacts are changed, it preserves indefinitely its constitution. Here is one of the most important differences in the behavior of living and lifeless matter. Genes, accordingly, do not alter their constitution when they enter into reaction. Genetists contradict themselves when they affirm, on the one hand, that genes are entities which maintain indefinitely their chemical composition, and on the other hand, that mutation is a change in the chemica composition of the genes. They are thus conferring to the genes properties of the living and the lifeless substances. The protoplasm, as we know, without changing its composition, can synthesize different kinds of compounds as enzyms, hormones, and the like. A mutation, in the opinion of the writer would then be a new property acquired by the protoplasm without altering its chemical composition. With regard to the activities of the enzyms In the cells, the author writes : Due to the specificity of the enzyms we have that what determines the order in which they will enter into play is the chemical composition of the substances appearing in the protoplasm. Suppose that a nucleoproteln comes in relation to a protoplasm in which the following enzyms are present: a protease which breaks the nucleoproteln into protein and nucleic acid; a polynucleotidase which fragments the nucleic acid into nucleotids; a nucleotidase which decomposes the nucleotids into nucleoids and phosphoric acid; and, finally, a nucleosidase which attacs the nucleosids with production of sugar and purin or pyramidin bases. Now, it is evident that none of the enzyms which act on the nucleic acid and its products can enter into activity before the decomposition of the nucleoproteln by the protease present in the medium takes place. Leikewise, the nucleosidase cannot works without the nucleotidase previously decomposing the nucleotids, neither the latter can act before the entering into activity of the polynucleotidase for liberating the nucleotids. The number of enzyms which may work at a time depends upon the substances present m the protoplasm. The start and the end of enzym activities, the direction of the reactions toward the decomposition or the synthesis of chemical compounds, the duration of the reactions, all are in the dependence respectively o fthe nature of the substances, of the end products being left in, or retired from the medium, and of the amount of material present. The velocity of the reaction is conditioned by different factors as temperature, pH of the medium, and others. Genetists fall again into contradiction when they say that genes act like enzyms, controlling the reactions in the cells. They do not remember that to cintroll a reaction means to mark its beginning, to determine its direction, to regulate its velocity, and to stop it Enzyms, as we have seen, enjoy none of these properties improperly attributed to them. If, therefore, genes work like enzyms, they do not controll reactions, being, on the contrary, controlled by substances and conditions present in the protoplasm. A gene, like en enzym, cannot go into play, in the absence of the substance to which it is specific. Tne genes are considered as having two roles in the organism one preparing the characters attributed to them and other, preparing the medium for the activities of other genes. At the first glance it seems that only the former is specific. But, if we consider that each gene acts only when the appropriated medium is prepared for it, it follows that the medium is as specific to the gene as the gene to the medium. The author concludes from the analysis of the manner in which genes perform their function, that all the genes work at the same time anywhere in the organism, and that every character results from the activities of all the genes. A gene does therefore not await for a given medium because it is always in the appropriated medium. If the substratum in which it opperates changes, its activity changes correspondingly. Genes are permanently at work. It is true that they attend for an adequate medium to develop a certain actvity. But this does not mean that it is resting while the required cellular environment is being prepared. It never rests. While attending for certain conditions, it opperates in the previous enes It passes from medium to medium, from activity to activity, without stopping anywhere. Genetists are acquainted with situations in which the attended results do not appear. To solve these situations they use to make appeal to the interference of other genes (modifiers, suppressors, activators, intensifiers, dilutors, a. s. o.), nothing else doing in this manner than displacing the problem. To make genetcal systems function genetists confer to their hypothetical entities truly miraculous faculties. To affirm as they do w'th so great a simplicity, that a gene produces an anthocyanin, an enzym, a hormone, or the like, is attribute to the gene activities that onlv very complex structures like cells or glands would be capable of producing Genetists try to avoid this difficulty advancing that the gene works in collaboration with all the other genes as well as with the cytoplasm. Of course, such an affirmation merely means that what works at each time is not the gene, but the whole cell. Consequently, if it is the whole cell which is at work in every situation, it follows that the complete set of genes are permanently in activity, their activity changing in accordance with the part of the organism in which they are working. Transplantation experiments carried out between creeper and normal fowl embryos are discussed in order to show that there is ro local gene action, at least in some cases in which genetists use to recognize such an action. The author thinks that the pleiotropism concept should be applied only to the effects and not to the causes. A pleiotropic gene would be one that in a single actuation upon a more primitive structure were capable of producing by means of secondary influences a multiple effect This definition, however, does not preclude localized gene action, only displacing it. But, if genetics goes back to the egg and puts in it the starting point for all events which in course of development finish by producing the visible characters of the organism, this will signify a great progress. From the analysis of the results of the study of the phenocopies the author concludes that agents other than genes being also capaole of determining the same characters as the genes, these entities lose much of their credit as the unique makers of the organism. Insisting about some points already discussed, the author lays once more stress upon the manner in which the genes exercise their activities, emphasizing that the complete set of genes works jointly in collaboration with the other elements of the cell, and that this work changes with development in the different parts of the organism. To defend this point of view the author starts fron the premiss that a nerve cell is different from a muscle cell. Taking this for granted the author continues saying that those cells have been differentiated as systems, that is all their parts have been changed during development. The nucleus of the nerve cell is therefore different from the nucleus of the muscle cell not only in shape, but also in function. Though fundamentally formed by th same parts, these cells differ integrally from one another by the specialization. Without losing anyone of its essenial properties the protoplasm differentiates itself into distinct kinds of cells, as the living beings differentiate into species. The modified cells within the organism are comparable to the modified organisms within the species. A nervo and a muscle cell of the same organism are therefore like two species originated from a common ancestor : integrally distinct. Like the cytoplasm, the nucleus of a nerve cell differs from the one of a muscle cell in all pecularities and accordingly, nerve cell chromosomes are different from muscle cell chromosomes. We cannot understand differentiation of a part only of a cell. The differentiation must be of the whole cell as a system. When a cell in the course of development becomes a nerve cell or a muscle cell , it undoubtedly acquires nerve cell or muscle cell cytoplasm and nucleus respectively. It is not admissible that the cytoplasm has been changed r.lone, the nucleus remaining the same in both kinds of cells. It is therefore legitimate to conclude that nerve ceil ha.s nerve cell chromosomes and muscle cell, muscle cell chromosomes. Consequently, the genes, representing as they do, specific functions of the chromossomes, are different in different sorts of cells. After having discussed the development of the Amphibian egg on the light of modern researches, the author says : We have seen till now that the development of the egg is almost finished and the larva about to become a free-swimming tadepole and, notwithstanding this, the genes have not yet entered with their specific work. If the haed and tail position is determined without the concourse of the genes; if dorso-ventrality and bilaterality of the embryo are not due to specific gene actions; if the unequal division of the blastula cells, the different speed with which the cells multiply in each hemisphere, and the differential repartition of the substances present in the cytoplasm, all this do not depend on genes; if gastrulation, neurulation. division of the embryo body into morphogenetic fields, definitive determination of primordia, and histological differentiation of the organism go on without the specific cooperation of the genes, it is the case of asking to what then the genes serve ? Based on the mechanism of plant galls formation by gall insects and on the manner in which organizers and their products exercise their activities in the developing organism, the author interprets gene action in the following way : The genes alter structures which have been formed without their specific intervention. Working in one substratum whose existence does not depend o nthem, the genes would be capable of modelling in it the particularities which make it characteristic for a given individual. Thus, the tegument of an animal, as a fundamental structure of the organism, is not due to gene action, but the presence or absence of hair, scales, tubercles, spines, the colour or any other particularities of the skin, may be decided by the genes. The organizer decides whether a primordium will be eye or gill. The details of these organs, however, are left to the genetic potentiality of the tissue which received the induction. For instance, Urodele mouth organizer induces Anura presumptive epidermis to develop into mouth. But, this mouth will be farhioned in the Anura manner. Finalizing the author presents his own concept of the genes. The genes are not independent material particles charged with specific activities, but specific functions of the whole chromosome. To say that a given chromosome has n genes means that this chromonome, in different circumstances, may exercise n distinct activities. Thus, under the influence of a leg evocator the chromosome, as whole, develops its "leg" activity, while wbitm the field of influence of an eye evocator it will develop its "eye" activity. Translocations, deficiencies and inversions will transform more or less deeply a whole into another one, This new whole may continue to produce the same activities it had formerly in addition to those wich may have been induced by the grafted fragment, may lose some functions or acquire entirely new properties, that is, properties that none of them had previously The theoretical possibility of the chromosomes acquiring new genetical properties in consequence of an exchange of parts postulated by the present writer has been experimentally confirmed by Dobzhansky, who verified that, when any two Drosophila pseudoobscura II - chromosomes exchange parts, the chossover chromosomes show new "synthetic" genetical effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1 - The Author, in this 3 thd. contribution, concludes the study of the biology and ecology of the species Tristicha trifaria (Willd.) Spreng. and Mourera aspera (Bong.) Tul., both of the Piracicaba Fall. 2 - According to the results of Dr. Peter van Royen (State Herbarium of Leiden, Holland), who made a complete revision of Podostemaceae of the Piracicaba Fall, the species Tristicha hypnoides (St. Hil.) Spreng. var. Hilarii Tul. and Mnioppsis Glazioviana Warm, correspond, respectively, to theTristicha trifaria (Willd.) Spreng. and Mniopsis weddelliana Tul. Apinagia Accorsii Toledo was transferred by Royen to the genus Wettsteiniola. So, its new name is Wettsteiniola accorsii (Toledo) v. Royen. 3 - Propagation by seeds may occur in the following places: a) placenta of partially open fruits; b) external and internal walls of the open capsules; c) pedicels of the fruits; d) remains of rhizomes, branches, etc. e) organic residues accumulated in water holes in the fall; f) clean rocks, in which the little groups of seedlings seems to be a colony of algae. Seeds adhere to the substrata above by means, of a mucilage produced by the transformation of the external integuments in contact with water. 4 - In the growth of the four species below it was found in Piracicaba Fall conspicuous zoning so scattered: a) Wettsteiniola accorsii (Toledo) v. Royen, in rocks situated just within the water fall, where velocity of the current and aeration of the water are very high. b) Tristicha trifaria (Willd.) Spreng. and Mniopsis weddelliana Tul., in rocks at some distance (100 m more or less) upstream until near the bridge across the river. c) Mourera aspera (Bong.) Tul., 300 m upwards the bridge. 5- During 1949, the ecological conditions of the Piracicaba Fall were changed due to the following factors: a) dry season very long, begining from last period of June until 30 november; b) stopping, during four months, of water from the Atibaia river (one of the components of Piracicaba river) near to the city of Americana, in the place where a new station of the Companhia Paulista de Força e Luz was build. In consequence, most of the Podostemaceae died. On the dry rocks there were only fruits and dried plants. 6 - Tristicha trifaria has the same biological and ecological behavior as the Mniopsis weddelliana,. 7 - The vegetative propagation of Tristicha trifaria is made by increasing of its branches, production of stolons with vegetatives buds and regeneration of old parts in especial conditions of water and aeration. 8 - Mourera aspera has the same vegetative propagation as the Wettsteiniola accorsii; it produces stolons (in very little percentage) with vegetative buds, branches of the rhizomes and regeneration of active old parts. 9 - Frequently, there is, on the plants an accumulation of sand, silt, loam, organic substances, and so on. The quantity of material stored depends of the purity of the water, of the morphology of the plants and of the situation on the fall. 10 - In extrem conditions of dry heat, the surviving of the species in its habitat depends exclusively from germination of seeds in the mentioned substrata. Exceptionally, some plants survive in a few water pockets full with the weak remaining current.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The A. and his co-workers captured in trips in the hinterland of Brazil more tham 17.000 flebotomi from which 35 are new ones, 11 discribed by, him in previous papers. The A. found these insects in groups of species living in different habitats, some ones of them not yet known: ondoors, or outdoors attracted by light or animal baits, without Shannon’s trap, in great or small caves, in the jungle in tree’s holes, holes in stones, holes in the soil habited by animals like armadillos, pacas (Aguti paca), wild rats, cururú toad (Bufo sp.). He observed the life history of 13 species: Flebotomus longipalpis Lutz& Neiva, 1912, Flebotomus intermedius Lutz & Neiva, 1912, Flebotomus avellari Costa Lima, 1932, Flebotomus aragãoi costa Lima, 1932, Flebotomus lutzianus Costa Lima, 1932, Flebotomus limai fonseca, 1935, Flebotomus rickardi Costa Lima, 1936, Flebotomus dasipodogeton Castro, 1939, Flebotomus oswaldoi n. sp., Flebotomus villelai n. sp., Flebotomus triacanthus n. sp., Flebotomus longispinus n. sp. And flebotomus travassosi n. sp. He describes the male of 24 n. sp., explaining the differential diagnose of group or nearly allied species. He inclued F. rooti n. sp. And F. hirsutus n. sp. In the sub-genus Shannonomyia. The first one, very allied to F. davisi Root is different from it, for presenting in the dorsal side of the abdomen bristles and not scales and to have the median claspers longer than his inner appendage and F. hirsutus quite different from the others which show 3 spines on distal segment of the upper clasper and for being the only one who presents the bristles of inner appendage of median clasper longer than it. Only the females of F. amazonensis Root and f. chagasi Costa Lima, are known and then it is possible that they belong to one of the species of this sub-genus from whom only the male have been described. F. choti Floch & Abonnenc, captured also at Pará, F. triacanthus n. sp. F. trispinosus n. sp. And F. equatorialis n. sp. Are very related and to this group the A. proposes the same of Pressatia as sub-genus in honor to whom demonstrated the medical importance of the flebotomi, considering F. triacanthus as the type specie of this sub-genus. In this sub-genus the V papal joint is very long, longer than III + IV, the antennae with geniculated spines without posterior outgrowth. At the genitalia the basal segment of the upper clasper presents two types of bristles ou the inner face, arranged in tuft; the distal segment with 3 spines and 2 thin bristles something difficult to see one of them situated near the apical spine and the other on the base of tubercle where the median spine is articulated; the median clasper is unarmed and compressed; the inferior clasper is also unarmed and longer than de basal segment of the upper clasper; the pompeta is longer than the basal segment of the upper clasper. Following it is presented a key for the determination of the males of the four species of this sub-genus. F. micropygus n. sp., F. minasensis n. sp. e F. dandrophylus n. sp., f. shannoni, F. monticolus, F. pestanai, F. lanei and F. cayenensis constitute a group with many similars characters. F. micropygus is the only American species who present α smaller than β and for that reason and others is allied to. F. minuts and others related species, but presents two terminal spines on the distal segment of the upper clasper. F. micropygus and f. minasensis are quite different because they have very small genitalia, smaller than their heads. F. dendrophylus presents on the median clasper a naked area near the apex and for this and others characters is different from the others of the group. F. flaviscutellatus n. sp., F. oliverioi, F. intermedius and whithmani, are very allied but the first one can be very easily distinguished because it’s scutellum is light. Flebotomus barrettoi n. sp., F. coutinhoi n. sp., F. aragãoi, F. brasiliensis, F. lutzianus, F. texanus, F. pascalei, F. atroclavatus and F. tejeraae are very allied forming a natural group. The two last ones are not well known but the A. A. who have studied them described very long clipeus so long as the head and for that reason can be distinguished from all the others included the two new ones. F. coutinhoi is the only one who presents the apecis of the penis filaments twisted. F. barrettoi n. sp., can be distinguished from aragãoi, texamus and coutinhoi by the length of the penis filaments and from atrocavatus, tejeraae, lutzianus and brasiliensis by the arrangement of the spines of distal segment of the upper clasper. Flebotomus ubiquitalis n. sp., F. auraensis n. sp., F. affinis and F. microps e F. antunesi have many common characters. F. microps n. sp., can be distinguished from any one by the size of the eyes and the presence od well developed genae. This species and other new species are different from F. antunesi by the arrangement of the spines of the distal segment of the upper clasper of the latter. F. ubiquitalis n. sp. can be distinguished from others by the figure of the median clasper. F. auraensis n. sp. Can be distinguished from F. affinis n. sp. By the tuft hairs on the inner face of the basal segment and by arrangement of the spines of the sital segment of the upper clasper. Flebotomus brachipygus n. sp. Seemed to be F. rostrans, specie not well known, by the characters of the genitalia but can not be identified to her by the clypeus size and the palpi’s characters. Flebotomus costalimai, n. sp., f. tupynambai n. sp., and f. castroi Barreto & Coutinho, 1941, are very allied species and the A. proposes to included them the new sub-genus Castromyia, in honor to Dr. G. M. de Oliveira Castro, appointing like typespecies F. castroi with the V joint longer than III + IV; antennae with geniculated spines without posterior prolongation. Genitalia: the basal segment of the upper clasper with a tuft of hairs and the distal segment with 4 spines, one of them at the apex and near it a thin and straight bristle difficult to see; the median clasper with one spinous hair isolated...

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The brazilian wild rabbit (Sylvilagus minensis) is sensible to the virus of the mixomatosis but the desease takes on it a mild character, lasts for long time and generally do not kill the animal. The tumors are generally smaller and less numerous than those of the domestic rabbit, but sometimes there were noted large and flat lesions (fig. 3). The natural infection of the wild rabbit may be quite common not only because many rabbits caught in the country were found to be immune as also because it was found among the animals caught in the country near Rio, one that was infected with mixomatosis. The experimental infection of the Sylvilagus may be easily obtained by cutan, subcutan or conjuntival way and also when a health wild rabbit is placed in the same cage with a sick domestic animal. It is also possible to obtain the infection of the wild and domestic rabbits by the bite of infected blood sucking insects as fleas and mosquitoes. The infected mosquito can transmit the disease 2 or 3 times til 17 days after an infective meal on a sick rabbit. The transmission is a mecanical one and only the proboscis of the insect contains the virus as it was shown by the inoculation of emulsions of the proboscis, thorax and abdomen of the mosquito. Though mecanical this kind of transmission acts as an important epidemiological mean of dissemination of the deseasse and splains the suddendly outbreaks of mixomatosis in rabbits breedings where no new rabbits were introduced since very long time. The transmition of mixomatosis by fleas (Slenopsylla) was at first demonstrated by us, then S. Torres pointed out the capacity of Culex fatigans to transmit the desease and now we have proved that Aedes scapularis and Aedes aegypti were also able to transmit it (Foto 1 and 2). The virus of the mixomatosis (Chlamidozoon mixoma) is seen on the smeavs of the tumors of the wild reabbit with the same morphology, as in the material of the domestic animal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A note on the evolution of cow-pox virus in wild animals of Brazilian fauna. We have tried the sensibility of wild animals of Brazilian fauna to the cow-pox virus. The following specimens were submitted to experiences: Procyon cancrivorus, Hydrochoerus capybara, Cavea aperea, Coendu villosus, Didelphis aurita, Bradypus tridactylus, Euphractus sexcintus, Tamandua tetradactylus, Nasua narica, Dasyprocta aguti and Testudo tabulata. In all these animals, - excepting Bradypus tridactylus - we have obtained an infection with incubation (five days), aspect and duration similar to cow-pox of the laboratorial animals (calf and rabbit). In the Bradypus tridactylus howewer, the incubation was very long. Only after 30 days of inoculation we verified the infection with the formation of vesiculae and postulae.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Encholirium Lutzii is distinguished from the majority of species by its branched inflorescence. Only E. horridum L. B. Smith and rarely E. spectabile Martius exhibit this character, but have much larger flowers than E. Lutzii and stout floral axes. Also the wing of the seed in E. horridum is very long-caudate. We feel that it is particularly appropriate to dedicate this new species to Dr. Adolpho Lutz because of his great discoveries in the biological relationships of the Bromeliaceae.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In 1939, Mangabeira obtained, under laboratory conditions, the development of eggs of Phlebotomus brasiliensis Costa Lima, 1932, collected at Lassance (typical locality), Minas Gerais, Brasil. He then studied the female and immature stages of this Phlebotomus. The results of these observations plus some more recent data on the male, geographical distribution and bionomics are presented. Morphologically it is closest to Phlebotomus runoides. However, the male Phlebotomus brasiliensis differs from all other Phlebotomus because of its very long spicules, similar to those of Brumptomyia. The female differs by its longer ducts, and by possessing only four horizontal teeth in the buccal cavity, whereas P. runoides has approximately 12 teeth. The pupae of P. brasiliensis is characterized by its two pre-alar setae, which are very simple and small and by the abdominal setae, which are not planted on a protruding tubercle. The fourth stage larvae main characteristics are very thin antennae, inserted on a protruding tuberculum, and slightly brush-like hind frontal setae. P. brasiliensis is here reported, for the first time, for the State of Bahia (Cachoeira, Pojuca and Salvador). The species has almost always been found in armadillo burrows. In the State of Bahia it is more frequent during the dry season. Under laboratory conditions, the female lays about 53 eggs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A larva with peculiar very long pubescence on the integument, the pupa of Cryptotylus unicolor, and the larva and pupa of Tabanus nebulosus ornativentris are described and illustrated

Relevância:

100.00% 100.00%

Publicador:

Resumo:

According to the descriptions of five closely related species of the genus Triatoma Laporte, 1832: T. phyllosoma (Burmeister, 1835), T. pallidipennis (Stal, 1872), T. picturata Usinger, 1939, T. longipennis Usinger, 1939 and T. mazzottii Usinger, 1941 and further published studies, these species could be included in a "specific complex" named as the species formerly described. All these species are typical from Mexico and another species was found in the same country, in the State of Puebla: Triatoma bassolsae sp. n. This species was morphologically compared with the other five of the "phyllosoma" complex, including the external male genitalia. The most important characters used to separate T. bassolsae from T. phyllosoma (which is the most similar to the other species) are the morphometric relationships on the head, with a longer anteocular region and a significant longer second rostral segment, a long and conspicuous pilosity in different areas of the body and specially on the head, and the characters of the anterolateral, lateral and discal tubercles of the pronotum, very long and sharp in the new species. The male genitalia has several differences between T. bassolsae and T. phyllosoma specially significant on the surface of the endosome process and on the branches of the phallosome support, separated at the apex in the new species. Types and paratypes are incorporated in the respective institutions in Mexico DF and Rio de Janeiro.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are two vectors of Chagas disease in Chile: Triatoma infestans and Mepraia spinolai. We studied the feeding behavior of these species, looking for differences which could possibly explain the low impact of the latter species on Chagas disease. Both species used thermal cues to locate their feeding source and consumed a similar volume of blood which was inversely related to the body weight before the meal and directly related to the time between meals. The average time between bites were 6.24 and 10.74 days. The average bite of M. spinolai lasted 9.68 min, significantly shorter than the 19.46 min for T. infestans. Furthermore, while T. infestans always defecated on the host, this behavior was observed in M. spinolai in only one case of 27 (3.7%). The delay between the bites and defecation was very long in M. spinolai and short in T. infestans. These differences may affect the reduced efficiency of transmission of Chagas infection by M. spinolai.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new genus and a new species of Heligmonellidae nematodes are described parasiting the stomach of three agoutis (two Dasyprocta fuliginosa and one D. leporina) captured in the middle and high Negro river microregion, state of Amazonas, Brazil. The new genus, as well as its type-species, are closely related to the trichostrongylids included in Fuellebornema, particularly on what concerns the pattern of the caudal bursa, but differing from them by the characteristics of the synlophe, that presents a poorly developed carene, when compared to the referred number of body ridges in Freitastrongylus n. gen. and consequently in F. angelae n. sp.,in which the ridges are well developed and the carene at mid-body has a similar size when compared to the ridge situated in front of the right field (ridge no. 5). Caudal bursa is of the type 1-4, with rays 9 shorter than rays 10, with a very long genital cone.