61 resultados para Variability Models
em Scielo Saúde Pública - SP
Resumo:
The combined use of precision agriculture and the Diagnosis and Recommendation Integrated System (DRIS) allows the spatial monitoring of coffee nutrient balance to provide more balanced and cost-effective fertilizer recommendations. The objective of this work was to evaluate the spatial variability in the nutritional status of two coffee varieties using the Mean Nutritional Balance Index (NBIm) and its relationship with their respective yields. The experiment was conducted in eastern Minas Gerais in two areas, one planted with variety Catucaí and another with variety Catuaí. The NBIm of the two varieties and their yields were analyzed through geostatistics and, based on the models and parameters of the variograms, were interpolated to obtain their spatial distribution in the studied areas. Variety Catucai, with grater spatial variability, was more nutritional unbalanced than variety Catuai, and consequently produced lower yields. Excess of Fe and Mn makes these elements limiting yield factors.
Resumo:
In this study, we concentrate on modelling gross primary productivity using two simple approaches to simulate canopy photosynthesis: "big leaf" and "sun/shade" models. Two approaches for calibration are used: scaling up of canopy photosynthetic parameters from the leaf to the canopy level and fitting canopy biochemistry to eddy covariance fluxes. Validation of the models is achieved by using eddy covariance data from the LBA site C14. Comparing the performance of both models we conclude that numerically (in terms of goodness of fit) and qualitatively, (in terms of residual response to different environmental variables) sun/shade does a better job. Compared to the sun/shade model, the big leaf model shows a lower goodness of fit and fails to respond to variations in the diffuse fraction, also having skewed responses to temperature and VPD. The separate treatment of sun and shade leaves in combination with the separation of the incoming light into direct beam and diffuse make sun/shade a strong modelling tool that catches more of the observed variability in canopy fluxes as measured by eddy covariance. In conclusion, the sun/shade approach is a relatively simple and effective tool for modelling photosynthetic carbon uptake that could be easily included in many terrestrial carbon models.
Resumo:
The estimation of non available soil variables through the knowledge of other related measured variables can be achieved through pedotransfer functions (PTF) mainly saving time and reducing cost. Great differences among soils, however, can yield non desirable results when applying this method. This study discusses the application of developed PTFs by several authors using a variety of soils of different characteristics, to evaluate soil water contents of two Brazilian lowland soils. Comparisons are made between PTF evaluated data and field measured data, using statistical and geostatistical tools, like mean error, root mean square error, semivariogram, cross-validation, and regression coefficient. The eight tested PTFs to evaluate gravimetric soil water contents (Ug) at the tensions of 33 kPa and 1,500 kPa presented a tendency to overestimate Ug 33 kPa and underestimate Ug1,500 kPa. The PTFs were ranked according to their performance and also with respect to their potential in describing the structure of the spatial variability of the set of measured values. Although none of the PTFs have changed the distribution pattern of the data, all resulted in mean and variance statistically different from those observed for all measured values. The PTFs that presented the best predictive values of Ug33 kPa and Ug1,500 kPa were not the same that had the best performance to reproduce the structure of spatial variability of these variables.
Resumo:
Soil properties have an enormous impact on economic and environmental aspects of agricultural production. Quantitative relationships between soil properties and the factors that influence their variability are the basis of digital soil mapping. The predictive models of soil properties evaluated in this work are statistical (multiple linear regression-MLR) and geostatistical (ordinary kriging and co-kriging). The study was conducted in the municipality of Bom Jardim, RJ, using a soil database with 208 sampling points. Predictive models were evaluated for sand, silt and clay fractions, pH in water and organic carbon at six depths according to the specifications of the consortium of digital soil mapping at the global level (GlobalSoilMap). Continuous covariates and categorical predictors were used and their contributions to the model assessed. Only the environmental covariates elevation, aspect, stream power index (SPI), soil wetness index (SWI), normalized difference vegetation index (NDVI), and b3/b2 band ratio were significantly correlated with soil properties. The predictive models had a mean coefficient of determination of 0.21. Best results were obtained with the geostatistical predictive models, where the highest coefficient of determination 0.43 was associated with sand properties between 60 to 100 cm deep. The use of a sparse data set of soil properties for digital mapping can explain only part of the spatial variation of these properties. The results may be related to the sampling density and the quantity and quality of the environmental covariates and predictive models used.
Resumo:
ABSTRACT The study of soil chemical and physical properties variability is important for suitable management practices. The aim of this study was to evaluate the spatial variability of soil properties in the Malhada do Meio settlement to subsidize soil use planning. The settlement is located in Chapadinha, MA, Brazil, and has an area of 630.86 ha. The vegetation is seasonal submontane deciduous forest and steppe savanna. The geology is formed of sandstones and siltstones of theItapecuru Formation and by colluvial and alluvial deposits. The relief consists of hills with rounded and flat tops with an average altitude of 67 m, and frequently covered over by ferruginous duricrusts. A total of 183 georeferenced soil samples were collected at the depth of 0.00-0.20 m inPlintossolos, Neossolo andGleissolo. The following chemical variables were analyzed: pH(CaCl2), H+Al, Al, SB, V, CEC, P, K, OM, Ca, Mg, SiO2, Al2O3, and Fe2O3; along with particle size variables: clay, silt, and sand. Descriptive statistical and geostatistical analyses were carried out. The coefficient of variation (CV) was high for most of the variables, with the exception of pH with a low CV, and of sand with a medium CV. The models fitted to the experimental semivariograms of these variables were the exponential and the spherical. The range values were from 999 m to 3,690 m. For the variables pH(CaCl2), SB, and clay, there are three specific areas for land use planning. The central part of the area (zone III), where thePlintossolos Pétricos and Neossolos Flúvicos occur, is the most suitable for crops due to higher macronutrient content, organic matter and pH. Zones I and II are indicated for environmental preservation.
Resumo:
This study aimed to evaluate the spatial variability of leaf content of macro and micronutrients. The citrus plants orchard with 5 years of age, planted at regular intervals of 8 x 7 m, was managed under drip irrigation. Leaf samples were collected from each plant to be analyzed in the laboratory. Data were analyzed using the software R, version 2.5.1 Copyright (C) 2007, along with geostatistics package GeoR. All contents of macro and micronutrients studied were adjusted to normal distribution and showed spatial dependence.The best-fit models, based on the likelihood, for the macro and micronutrients were the spherical and matern. It is suggest for the macronutrients nitrogen, phosphorus, potassium, calcium, magnesium and sulfur the minimum distances between samples of 37; 58; 29; 63; 46 and 15 m respectively, while for the micronutrients boron, copper, iron, manganese and zinc, the distances suggests are 29; 9; 113; 35 and 14 m, respectively.
Resumo:
The air dry-bulb temperature (t db),as well as the black globe humidity index (BGHI), exert great influence on the development of broiler chickens during their heating phase. Therefore, the aim of this study was to analyze the structure and the magnitude of the t db and BGHI spatial variability, using geostatistics tools such as semivariogram analysis and also producing kriging maps. The experiment was conducted in the west mesoregion of the states of Minas Gerais in 2010, in a commercial broiler house with heating system consisting of two furnaces that heat the air indirectly, in the firsts 14 days of the birds' life. The data were registered at intervals of five minutes in the period from 8 a.m. to 10 a.m. The variables were evaluated by variograms fitted by residual maximum likelihood (REML) testing the Spherical and Exponential models. Kriging maps were generated based on the best model used to fit the variogram. It was possible to characterize the variability of the t db and BGHI, which allowed observing the spatial dependence by using geostatistics techniques. In addition, the use of geostatistics and distribution maps made possible to identify problems in the heating system in regions inside the broiler house that may harm the development of chicks.
Management zones using fuzzy clustering based on spatial-temporal variability of soil and corn yield
Resumo:
Clustering soil and crop data can be used as a basis for the definition of management zones because the data are grouped into clusters based on the similar interaction of these variables. Therefore, the objective of this study was to identify management zones using fuzzy c-means clustering analysis based on the spatial and temporal variability of soil attributes and corn yield. The study site (18 by 250-m in size) was located in Jaboticabal, São Paulo/Brazil. Corn yield was measured in one hundred 4.5 by 10-m cells along four parallel transects (25 observations per transect) over five growing seasons between 2001 and 2010. Soil chemical and physical attributes were measured. SAS procedure MIXED was used to identify which variable(s) most influenced the spatial variability of corn yield over the five study years. Basis saturation (BS) was the variable that better related to corn yield, thus, semivariograms models were fitted for BS and corn yield and then, data values were krigged. Management Zone Analyst software was used to carry out the fuzzy c-means clustering algorithm. The optimum number of management zones can change over time, as well as the degree of agreement between the BS and corn yield management zone maps. Thus, it is very important take into account the temporal variability of crop yield and soil attributes to delineate management zones accurately.
Resumo:
The aim of this work was to estimate the susceptibility of thirty-six peach cultivars to leaf rust caused by Tranzschelia discolor f. sp. persica. The incidence and severity of the disease as well as defoliation in peach trees of an experimental orchard of Parana Federal University of Technology, Campus Dois Vizinhos were evaluated on the growing seasons 2004/2005 and 2005/2006. Immunity to this disease was not observed in the studied cultivars. There was difference in leaf rust intensity depending on the growing season conditions. Cultivars 'Pilcha', 'Sinuelo', 'Chirua', 'Sulina', 'Eldorado' and 'Pampeano' showed tolerance to leaf rust, whereas cultivars 'Vila Nova', 'Fla 1372', 'Coral 2', 'Chimarrita', 'Della Nona', 'BR-1 ' and 'Guaiaca' showed high susceptibility.
Resumo:
Information on the spatial distribution of particle size fractions is essential for use planning and management of soils. The aim of this work to was to study the spatial variability of particle size fractions of a Typic Hapludox cultivated with conilon coffee. The soil samples were collected at depths of 0-0.20 and 0.20-0.40 m in the coffee canopy projection, totaling 109 georeferentiated points. At the depth of 0.2-0.4 m the clay fraction showed average value significantly higher, while the sand fraction showed was higher in the depth of 0-0.20 m. The silt showed no significant difference between the two depths. The particle size fractions showed medium and high spatial variability. The levels of total sand and clay have positive and negative correlation, respectively, with the altitude of the sampling points, indicating the influence of landscape configuration.
Resumo:
The purpose of this study is to investigate the contribution of psychological variables and scales suggested by Economic Psychology in predicting individuals’ default. Therefore, a sample of 555 individuals completed a self-completion questionnaire, which was composed of psychological variables and scales. By adopting the methodology of the logistic regression, the following psychological and behavioral characteristics were found associated with the group of individuals in default: a) negative dimensions related to money (suffering, inequality and conflict); b) high scores on the self-efficacy scale, probably indicating a greater degree of optimism and over-confidence; c) buyers classified as compulsive; d) individuals who consider it necessary to give gifts to children and friends on special dates, even though many people consider this a luxury; e) problems of self-control identified by individuals who drink an average of more than four glasses of alcoholic beverage a day.
Resumo:
The impact of shift and night work on health shows a high inter- and intra-individual variability, both in terms of kind of troubles and temporal occurrence, related to various intervening factors dealing with individual characteristics, lifestyles, work demands, company organisation, family relations and social conditions. The way we define "health" and "well-being" can significantly influence appraisals, outcomes and interventions. As the goal is the optimisation of shiftworkers' health, it is necessary to go beyond the health protection and to act for health promotion. In this perspective, not only people related to medical sciences, but many other actors (ergonomists, psychologists, sociologists, educators, legislators), as well as shiftworkers themselves. Many models have been proposed aimed at describing the intervening variables mediating and/or moderating the effects; they try to define the interactions and the pathways connecting risk factors and outcomes through several human dimensions, which refer to physiology, psychology, pathology, sociology, ergonomics, economics, politics, and ethics. So, different criteria can be used to evaluate shiftworkers' health and well-being, starting from biological rhythms and ending in severe health disorders, passing through psychological strain, job dissatisfaction, family perturbation and social dis-adaptation, both in the short- and long-term. Consequently, it appears rather arbitrary to focus the problem of shiftworkers' health and tolerance only on specific aspects (e.g. individual characteristics), but a systemic approach appears more appropriate, able to match as many variables as possible, and aimed at defining which factors are the most relevant for those specific work and social conditions. This can support a more effective and profitable (for individuals, companies, and society) adoption of preventive and compensative measures, that must refer more to "countervalues" rather than to "counterweights".
Resumo:
Giardia duodenalis isolates from asymptomatic or symptomatic patients and from animals present similarities and differences in the protein composition, antigenic profile, pattern of proteases and isoenzymes, as well as in nucleic acids analysis. In the present overview, these differences and similarities are reviewed with emphasis in the host-parasite interplay and possible mechanisms of virulence of the protozoon.