15 resultados para Valence émotive
em Scielo Saúde Pública - SP
Resumo:
OBJECTIVE: The study presents the Brazilian norms for 240 new stimuli from International Affective Picture System (IAPS), a database of affective images widely used in research, compared to the North-American normative ratings. METHODS: The participants were 448 Brazilian university students from several courses (269 women and 179 men) with mean age of 24.2 (SD = 7.8), that evaluated the IAPS pictures in the valence, arousal and dominance dimensions by the Self-Assessment Manikin (SAM) scales. Data were compared across the populations by Pearson linear correlation and Student's t-tests. RESULTS: Correlations were highly significant for all dimensions; however, Brazilians' averages for arousal were higher than North-Americans'. CONCLUSIONS: The results show stability in relation to the first part of the Brazilian standardization and they are also consistent with the North-American standards, despite minor differences relating to interpretation of the arousal dimension, demonstrating that IAPS is a reliable instrument for experimental studies in the Brazilian population.
Resumo:
The different climatic regions determine the zoogeographic distribution of various animal species depending on their particular conditions and ecological preferences. The host schistosomiasis planorbid is one of these species. This paper deals with the distribution of Biomphalaria straminea in northeast Brazil. It starts from the analysis of different climatic peculiarities in this region, associated to limnological observation done by the author in three different hydric collections in the state of Sergipe. It has been concluded that this is an "eurióioca" species. Its broad ecological valence permits this species to survive in regions where climate asperties are evident, requiring behavior and physiological adaptations. The species survives in all northeast region, from "zona da mata", in the coast, to the semi-arid "sertão".
Resumo:
Institutional and organizational variety is increasingly characterizing advanced economic systems. While traditional economic theories have focused almost exclusively on profit-maximizing (i.e., for-profit) enterprises and on publicly-owned organizations, the increasing relevance of non-profit organizations, and especially of social enterprises, requires scientists to reflect on a new comprehensive economic approach for explaining this organizational variety. This paper examines the main limitations of the orthodox and institutional theories and asserts the need for creating and testing a new theoretical framework, which considers the way in which diverse enterprises pursue their goals, the diverse motivations driving actors and organizations, and the different learning patterns and routines within organizations. The new analytical framework proposed in the paper draws upon recent developments in the theories of the firm, mainly of an evolutionary and behavioral kind. The firm is interpreted as a coordination mechanism of economic activity, and one whose objectives need not coincide with profit maximization. On the other hand, economic agents driven by motivational complexity and intrinsic, non-monetary motivation play a crucial role in forming firm activity over and above purely monetary and financial objectives. The new framework is thought to be particularly suitable to correctly interpret the emergence and role of nontraditional organizational and ownership forms that are not driven by the profit motive (non-profit organizations), mainly recognized in the legal forms of cooperative firms, non-profit organizations and social enterprises. A continuum of organizational forms ranging from profit making activities to public benefit activities, and encompassing mutual benefit organizations as its core constituent, is envisaged and discussed.
Resumo:
Maghemite (γFe2O3) from tuffite is exceptionally rich in Mg, relatively to most of those reportedly found in other mafic lithosystems. To investigate in detail the compositional and structural variabilities of this natural magnetic iron oxide, sets of crystals were isolated from samples collected at different positions in a tuffite weathering mantle. These sets of crystal were individually powdered and studied by X-ray diffractometry, Mössbauer spectroscopy, magnetization measurements and chemical analysis. Lattice parameter of the cubic cell (a0) was found to vary from 0.834(1) to 0.8412(1) nm. Lower a0-values are characteristic of maghemite whereas higher ones are related to a magnetite precursor. FeO content ranges up to 17 mass % and spontaneous magnetization ranges from 8 to 32 J T-1 kg-1. Zero-field room temperature Mössbauer spectra are rather complex, indicating that the hyperfine field distributions due to Fe3+ and mixed valence Fe3+/2+ overlap. The structural variabilities of the (Mg, Ti)-rich iron oxide spinels is essentially related to the range of chemical composition of its precursor (Mg, Ti)-rich magnetite, and probably to the extent to which it has been oxidized during transformation in soil.
Resumo:
Despite the importance of the 4,4'-dithiodipyridine as an electrode modifier on the protein electrochemical studies and as a remarkable bridged-ligand on conducting electronic density in binuclear mixed valence complexes, there is no data available in the literature concerning acid-base behavior of this compound. Aiming to afford such information we undertook the ionization equilibrium study of this ligand. Although two acid species, DTDPH+ and DTDPH2+ have been detected in solution, only the diacid-form was possible to be isolated as a perclorate salt DTDPH2(ClO4)2. The ionization constants for the two step equilibrium processes (pKa1=2.70 and pKa2=4.80) were determined by using the spectrophotometric technique and aqueous solutions of CF3COONa, mu=0,1 mol.L-1 .
Resumo:
This article reports on some basic and conceptual principles concerning electron transfer (ET) and/or intervalence transfer (IT) phenomena in inorganic mixed-valence systems.
Resumo:
Despite of being used as thermodynamic criterion to rank alkene stability in a number of undergraduate textbooks, the heat of hydrogenation does not describe adequately the relative stability of disubstituted alkenes. In this work, both the heat of formation and the heat of combustion were used as thermodynamic criteria to rank correctly the stability of alkenes according to the degree of alkyl substitution and also in the disubstituted series (geminal > trans > cis). An operational model based on molecular orbital and valence bond representations of hyperconjugation is proposed to show how this effect can explain the order of stability of this class of compounds.
Resumo:
Cation exchange capabilities of a Brazilian natural zeolite, identified as scolecite, were evaluated for application in wastewater control. We investigated the process of sorption of chromium(III), nickel(II), cadmium(II) and manganese(II) in synthetic aqueous effluents, including adsorption isotherms of single-metal solutions. The natural zeolite showed the ability to take up the tested heavy metals in the order Cr(III) > Cd(II) > Ni(II) > Mn(II), and this could be related to the valence and the hydration radius of the metal cations. The influence of temperature (25, 40 and 60 ºC) and initial pH value (from 4 to 6) was also evaluated. It was found that the adsorption increased substantially when the temperature was raised to 60 ºC and that maximum adsorption capacity was observed at pH 6. These results demonstrate that scolecite can be used for removal of heavy metals from aqueous effluents, under optimized conditions.
Resumo:
The present article is devoted to Chemistry or Physics undergraduate students, given their difficulty to understand fundamental concepts and technical language used in atomic spectroscopy and quantum mechanics. An easy approach is shown in the treatment of the emission spectrum of the sodium atom without any involved calculations. In a previous article, the hydrogen spectrum was considered and the energy degeneracy of the angular momentum quantum number was observed. For the sodium spectrum, due to the valence electron penetration into internal shells, a breakdown of this degeneracy occurs and a dependence of this penetration on the angular momentum quantum number is observed. The eigenvalues are determined introducing the quantum defect correction (Rydberg correction) in the denominator of the Balmer equation, and the energy diagram is obtained. The intensity ratio for the observed doublets is explained by introducing new wave functions, containing the magnetic quantum number of the total angular momentum.
Resumo:
The removal of As(V) by a crosslinked iron(III)-chitosan adsorbent was evaluated under various conditions. The adsorption capacity of CH-FeCL was around 54 mg/g of As(V). The kinetics of adsorption obeys a pseudo-first-order model with rate constants equal to 0.022, 0.028, and 0.033 min-1 at 15, 25 and 35 ºC respectively. Adsorption data were well described by the Langmuir model, although they could be modeled also by the Langmuir-Freundlich equation. The maximum adsorption capacity, calculated with the Langmuir model, was 127 mg g-1 of As(V). The inhibition by competing anions is dependant on their kind and valence.
Resumo:
The present work discusses the appearance of the concepts of valence and molecular structure, and describes the appropriation and evolution of the concept of molecule in the period following the publication of Avogadro's Hypothesis. The point of reference is the development of what became known as Organic Chemistry, which encompassed Pharmacy, Physiological Chemistry, Animal and Plant Chemistry, Chemistry of Dyestuffs, Agricultural Chemistry, and the fledgling Organic Synthesis industry in the early 19th century. The theories formulated in these areas and the quest for accurate atomic weights led to those concepts of valence and molecular structure and to a precise differentiation between atom and molecule.
Resumo:
We report a didactic experience in teaching Pearson's theory (HSAB) to graduate students in organic chemistry. This approach was based on teaching students how to use computer programs to calculate frontier orbitals (HOMO-LUMO). The suggested level of calculation was a semi-empiric PM3, proving to be efficient for obtaining robust and fast numerical results that can be performed easily in the classroom. We described a practical computational exercise and asked students to compare these numerical data with qualitative analysis using valence bond theory. A comprehensive solution of this exercise is presented, aiming to support teachers in their lessons.
Resumo:
The thermal decomposition behavior of the Fe(II), Co(II), Ni(II) and Zn(II) complexes of polydithiooxamide has been investigated by thermogravimetric analysis (TGA) at a heating rate of 20°C min-1 under nitrogen. The Coats-Redfern integral method is used to evaluate the kinetic parameters for the successive steps in the decomposition sequence observed in the TGA curves. The processes of thermal decomposition taking place in the four complexes are studied comparatively as the TGA curves indicate the difference in the thermal decomposition behavior of these complexes. The thermal stabilities of these complexes are discussed in terms of repulsion among electron pairs in the valence shell of the central ion and electronegativity effects.
Resumo:
Quantum Chemical calculations for group 14 elements of Periodic Table (C, Si, Ge, Sn, Pb) and their functional groups have been carried out using Density Functional Theory (DFT) based reactivity descriptors such as group electronegativities, hardness and softness. DFT calculations were performed for a large series of tetracoordinated Sn compounds of the CH3SnRR'X type, where X is a halogen and R and R' are alkyl, halogenated alkyl, alkoxy, or alkyl thio groups. The results were interpreted in terms of calculated electronegativity and hardness of the SnRR'X groups, applying a methodology previously developed by Geerlings and coworkers (J. Phys. Chem. 1993, 97, 1826). These calculations allowed to see the regularities concerning the influence of the nature of organic groups RR' and inorganic group X on electronegativities and hardness of the SnRR'X groups; in this case, it was found a very good correlation between the electronegativity of the fragment and experimental 119Sn chemical shifts, a property that sensitively reflects the change in the valence electronic structure of molecules. This work was complemented with the study of some compounds of the EX and ER types, where E= C, Si, Ge, Sn and R= CH3, H, which was performed to study the influence that the central atom has on the electronegativity and hardness of molecules, or whether these properties are mainly affected for the type of ligand bound to the central atom. All these calculations were performed using the B3PW91 functional together with the 6-311++G** basis set level for H, C, Si, Ge, F, Cl and Br atoms and the 3-21G for Sn and I atoms.
Resumo:
The combined influence of tempo and mode on emotional responses to music was studied by crossing 7 changes in mode with 3 changes in tempo. Twenty-four musicians aged 19 to 25 years (12 males and 12 females) and 24 nonmusicians aged 17 to 25 years (12 males and 12 females) were required to perform two tasks: 1) listening to different musical excerpts, and 2) associating an emotion to them such as happiness, serenity, fear, anger, or sadness. ANOVA showed that increasing the tempo strongly affected the arousal (F(2,116) = 268.62, mean square error (MSE) = 0.6676, P < 0.001) and, to a lesser extent, the valence of emotional responses (F(6,348) = 8.71, MSE = 0.6196, P < 0.001). Changes in modes modulated the affective valence of the perceived emotions (F(6,348) = 4.24, MSE = 0.6764, P < 0.001). Some interactive effects were found between tempo and mode (F (1,58) = 115.6, MSE = 0.6428, P < 0.001), but, in most cases, the two parameters had additive effects. This finding demonstrates that small changes in the pitch structures of modes modulate the emotions associated with the pieces, confirming the cognitive foundation of emotional responses to music.