26 resultados para VACUOLE PLASMEPSINS
em Scielo Saúde Pública - SP
Resumo:
In this study we have examined certain aspects of the process of cell invasion and parasitophorous vacuole escape by metacyclic trypomastigotes and extracellular amastigote forms of Trypanosoma cruzi (G strain). Using Vero (and HeLa) cells as targets, we detected differences in the kinetics of vacuole escape by the two forms. Alcalinization of intercellular pH influenced both invasion as well as the escape from the parasitophorous vacuole by metacyclic trypomastigotes, but not the escape kinetics of extracellular amastigotes. We used sialic acid mutants as target cells and observed that the deficiency of this molecule facilitated the escape of both infective forms. Hemolysin activity was only detected in extracellular amastigotes and neither form presented detectable transialidase activity. Invasion of extracellular amastigotes and trypomastigotes in Vero cells was affected in different ways by drugs that interfere with host cell Ca2+ mobilization. These results are in line with previous results that indicate that metacyclic trypomastigotes and extracellular amastigote forms utilize mechanisms with particular features to invade host cells and to escape from their parasitophorous vacuoles.
Resumo:
Lipid bodies [lipid droplets (LBs)] are lipid-rich organelles involved in lipid metabolism, signalling and inflammation. Recent findings suggest a role for LBs in host response to infection; however, the potential functions of this organelle in Toxoplasma gondii infection and how it alters macrophage microbicidal capacity during infection are not well understood. Here, we investigated the role of host LBs in T. gondii infection in mouse peritoneal macrophages in vitro. Macrophages cultured with mouse serum (MS) had higher numbers of LBs than those cultured in foetal bovine serum and can function as a model to study the role of LBs during intracellular pathogen infection. LBs were found in association with the parasitophorous vacuole, suggesting that T. gondii may benefit from this lipid source. Moreover, increased numbers of macrophage LBs correlated with high prostaglandin E2 (PGE2) production and decreased nitric oxide (NO) synthesis. Accordingly, LB-enriched macrophages cultured with MS were less efficient at controlling T. gondii growth. Treatment of macrophages cultured with MS with indomethacin, an inhibitor of PGE2 production, increased the microbicidal capacity against T. gondii. Collectively, these results suggest that culture with MS caused a decrease in microbicidal activity of macrophages against T. gondii by increasing PGE2 while lowering NO production.
Resumo:
Brown widow spider (Latrodectus geometricus) venom (BrWSV) produces few local lesions and intense systemic reactions such as cramps, harsh muscle pains, nausea, vomiting and hypertension. Approximately 16 protein bands under reducing conditions and ~ 14 bands under non-reducing conditions on a 12.5% sodium dodecyl sulfate-polyacrylamide gel electrophoresis were observed. Neurotoxic clinical manifestations were confirmed in vivo, while proteolytic activity was demonstrated on gelatine film. Severe ultrastructural damages in mice skeletal muscles were observed at 3, 6, 12 and 24 h postinjection with at total of 45 µg of venom protein. Infiltration of eosinophils and ruptures of the cellular membranes were observed in the muscles along with swelling of the nuclear cover and interruption of the collagen periodicity. Altered mitochondrias and autophage vacuoles, nuclear indentation and mitochondria without cristae, slight increment of intermyofibrillar and subsarcolemic spaces and myelinic figures formation were also observed. In the capillary, endothelial membrane unfolding into the lumen was noticed; along with myelinic figures compatible with a toxic myopathy. Swollen sarcotubular systems with lysis of membrane, intense mitochondria autophagia and areas without pinocytic vesicles were observed. Swollen mitochondria surrounded by necrotic areas, myofibrillar disorganization and big vacuolas of the sarcotubular system, degenerated mitochondrium with formation of myelinic figure was seen. Glycogenosomes with small particulate, muscle type glycogen was noticed. Autophagic vacuole (autophagolysosomes) and necrotic areas were also noticed. These damages may be due to interactive effects of the multifactorial action of venom components. However, Latrodectus geometricus venom molecules may also be utilized as neuro therapeutic tools, as they affect neuronal activities with high affinity and selectivity. To our knowledge, the present study is the first ultrastructural report in the literature of muscle injuries and neurological and proteolytic activities caused by BrWSV.
Resumo:
The following is a summary of the studies made on the development of Plasmodium gallinaceum sporozoites inoculated into normal chicks. Initially large numbers of laboratory reared Aëdes aegypti were fed on pullets heavily infected with gametocytes. Following the infectious meal the mosquitoes were kept on a diet of sugar and water syrup until the appearance of the sporozoites in the salivary glands. Normal chicks kept in hematophagous arthropod proof cages were then inoculated either by bite of the infected mosquitoes or by subcutaneous inoculations of salivary gland suspensions. By the first method ten mosquitoes fed to engorgement on each normal chick and were then sacrificed immediately afterwards to determine the sporozoite count. By the second method five pairs of salivary glands were dissected out at room temperature, triturated in physiological saline and inoculated subcutaneously. The epidermis and dermis at the site of inoculation were excised from six hours after inoculation to forty eight hours after appearance of the parasites in the blood stream and stretched out on filter paper with the epithelial surface downward. The dermis was then curretted. Slides were made of the scrapings consisting of connective tissue and epithelial cells of the basal layers which were fixed by metyl alcohol and stained with Giemsa for examination under the oil immersion lens. Skin fragments removed from normal chicks and from regions other than the site of inoculation in the infected chicks were used as controls. In these, only the normal histological aspect was ever encountered. In the biopsy made at the earliest period following inoculation clearly defined elongated forms with eight or more chromatin granules arranged in rosary formation were found. The author believes these to be products of the sporozoite evolution. Search for transition stages between these forms and sporozoites is planned in biopsies to be taken immediately following inoculation and at given intervals up to the six hour period. 1.) 6 and 12 hour periods. The bodies referred to above found in the first period in great abundance, apparently in proportion to the large numbers of sporozoites inoculated, were perceptibly reduced in numbers in the second period. 2.) 18 hour period. Only one biopsy was examined. This presented a binuclear body shown in Fig. 1, having a more or less hyaline protoplasm staining an intense blue and a narrow vacuole delimiting the cell boundaries. The two chromatin grains were quite large presenting a clearly defined nuclear texture. 3.) 24 hour period. A similar body to that above (Fig. 2) was seen in the only preparation examined. 4.) 60 hour period. The exoerythrocytic schizonts were found more frequently from this period onward. Several such were found no longer to contain the previously described vacuoles (Fig. 3). 5.) 84 hour period. Cells bearing eight or more schizonts were frequently encountered here. That these are apparently not bodies in process of division may be seen in Fig. 4. From this time onward small violet granules similar to volutine grains appeared constantly in the schizont nucleus and protoplasm. These are definitely not hemozoin. The above observations fell within the incubation period as repeated examinations of the peripheral and visceral blood were negative. Exoery-throcytic parasites also were never encountered in the viscera at this time. Exoerythrocytic schizonts searched for at site of inoculation 1, 24 and 48 hours after the incubation period were present in large number at all three times with apparent tendency to diminish as the number within the blood stream increased. Many of them presented the violet granules mentioned above. The appearance of the chromatin and the intensity of staining of the protoplasm varied from body to body which doubtless corresponds to the evolutionary stage of each. This diversity of aspect may frequently be seen in the parasites of the same host cell (Fig. 5.). These findings lend substance to the theory that the exoerythrocytic forms are the link between the sporozoites and the pigmented parasites of the red blood corpuscles. The explanation of their continued presence in the organism after infection of the blood stream takes place and their presence in cases infected by the inoculation blood does not come within the scope of this work. Large scale observations shortly to be undertaken will be reported in more detail particularly observations on the first evolutionary phases of the sporozoite within the organism of the vertebrate host.
Resumo:
The P126 protein, a parasitosphorus vacuole antigen of Plasmodium falciparum has beenshoen to induce protective immunity in Saimiri and Aotus monkeys. In the present work we investigated its immunogenicity. Our results suggest that the N-term of P126 is poorly immunogenic and antibody response against the P126 could be under a MHC restricted control in C57BL/6(H-2b) mice, which could be problematic in ternms of a use of the P126 in a vaccine program. However, we observed that a synthetic peptide, copying the 6 octapeptide repeat corresponding to the N-term of the P126, induces an antibody response to the native molecule in C57BL/6 non-responder mice. Moreover, the vaccine-P126 recombinant induced anmtibodies against the N-term of the molecule in rabbits while the unprocessed P126 did not.
Resumo:
Macrophages and muscle cells are the main targets for invasion of Trypanosoma cruzi. Ultrastructural studies of this phenomenon in vitro showed that invasion occurs by endocytosis, with attachment and internalization being mediated by different components capable of recognizing epi-or trypomastigotes (TRY). A parasitophorus vacuole was formed in both cell types, thereafter fusing with lysosomes. Then, the mechanism of T. cruzi invasion of host cells (HC) is essentially similar (during a primary infection in the abscence of a specific immune response), regardless of wether the target cell is a professional or a non-professional phagocytic cell. Using sugars, lectins, glycosidases, proteinases and proteinase inhibitors, we observed that the relative balance between exposed sialic acid and galactose/N-acetyl galactosamine (GAL) residues on the TRY surface, determines the parasite's capacity to invade HC, and that lectin-mediated phagocytosis with GAL specificity is important for internalization of T. cruzi into macrophages. On the other hand, GAL on the surface to heart muscle cells participate on TRY adhesion. TRY need to process proteolytically both the HC and their own surface, to expose the necessary ligands and receptors that allow binding to, and internalization in the host cell. The diverse range of molecular mechanisms which the parasite could use to invade the host cell may correspond to differences in the available "receptors"on the surface of each specific cell type. Acute phase components, with lectin or proteinase inhibitory activities (a-macroglobulins), may also be involved in T. cruzi-host cell interaction.
Resumo:
Experimental infections of the phytophagous Hemiptera Dysdercus peruvianus with different trypanosomatids were studied for up to 55 days by light microscopy while the course of infection with Leptomonas seymouri and the Leptomonas isolate 49/553G.O. was analyzed by electron microscopy. Rates of infection of D. peruvianus varied according to the infecting flagellate. The lower part of the midgut was found to be the preferential site of colonization where most flagellates were found isolated or arranged in clumps or rosettes. Specialized junctional structures with host cells were never observed. Flagellates could also be seen inside midgut cells within a parasitophorous vacuole. Infection of haemocoele and salivary glands was also observed.
Resumo:
The ultrastructure of endogenous stages of Eimeria ninakohlyakimovae was observed in epithelial cells of cecum and colon crypts from a goat experimentally infected with 2.0 x 105 oocysts/kg. The secondary meronts developed above the nucleus of the host cell. The nucleus first divides and merozoites then form on the surface of multinucleated meronts. Free merozoites in the parasitophorous vacuole present a conoid, double membrane, one pair of rhoptries, micronemes, micropore, anterior and posterior polar ring, a nucleus with a nucleolus and peripheral chromatin. The microgamonts are located below the nucleus of the host cell and contain several nuclei at the periphery of the parasite. The microgametes consist of a body, a nucleus, three flagella and mitochondria. The macrogamonts develop below the nucleus of the host cell and have a large nucleus with a prominent nucleolus. The macrogametes contain a nucleus, wall-forming bodies of type I and type II. The young oocysts present a wall containing two layers and a sporont
Internalization of components of the host cell plasma membrane during infection by Trypanosoma cruzi
Resumo:
Epimastigote and trypomastigote forms of Trypanosoma cruzi attach to the macrophage surface and are internalized with the formation of a membrane bounded vacuole, known as the parasitophorous vacuole (PV). In order to determine if components of the host cell membrane are internalized during formation of the PV we labeled the macrophage surface with fluorescent probes for proteins, lipids and sialic acid residues and then allowed the labeled cells to interact with the parasites. The interaction process was interrupted after 1 hr at 37ºC and the distribution of the probes analyzed by confocal laser scanning microscopy. During attachment of the parasites to the macrophage surface an intense labeling of the attachment regions was observed. Subsequently labeling of the membrane lining the parasitophorous vacuole containing epimastigote and trypomastigote forms was seen. Labeling was not uniform, with regions of intense and light or no labeling. The results obtained show that host cell membrane lipids, proteins and sialoglycoconjugates contribute to the formation of the membrane lining the PV containing epimastigote and trypomastigote T. cruzi forms. Lysosomes of the host cell may participate in the process of PV membrane formation.
Resumo:
Toxoplasma gondii invades and proliferates in human umbilical vein endothelial cells where it resides in a parasitophorous vacuole. In order to analyze which components of the endothelial cell plasma membrane are internalized and become part of the parasitophorous vacuole membrane, the culture of endothelial cells was labeled with cationized ferritin or UEA I lectin or anti Class I human leukocytte antigen (HLA) before or after infection with T. gondii. The results showed no cationized ferritin and UEA I lectin in any parasitophorous vacuole membrane, however, the Class I HLA molecule labeling was observed in some endocytic vacuoles containing parasite until 1 h of interaction with T. gondii. After 24 h parasite-host cell interaction, the labeling was absent on the vacuolar membrane, but presents only in small vesicles near parasitophorous vacuole. These results suggest the anionic site and fucose residues are excluded at the time of parasitophorous vacuole formation while Class I HLA molecules are present only on a minority of Toxoplasma-containig vacuoles.
Resumo:
A new species of Myxosporea, Henneguya chydadea, is described parasitizing the gills of Astyanax altiparanae collected from a lake on Rio das Pedras farm near Campinas, state of São Paulo, Brazil. Of the fish examined, 88.3% had gills parasitized by myxosporeans. The prevalence of the parasite ranged from 80% in the spring and fall, 93% in the summer and 100% in the winter. The parasite induced the formation of white, oval-shaped cysts measuring 40-64 µm x 64-80 µm which deformed the gill lamellae, compressed the capillaries, and caused retraction of the neighboring lamellae. The mature spores were elongated and had two identical, parallel elongate polar capsules. Each capsule contained a polar filament with 9-10 turns. There was no mucous envelope or iodinophilous vacuole. Morphometric differences between this parasite and other species of the genus Henneguya indicated, that he parasite observed in A. altiparanae is a new species. This is the first report of a myxosporeanparasitizing A. altiparanae.
Resumo:
A new myxosporean species is described from the fish Semaprochilodus insignis captured from the Amazon River, near Manaus. Myxobolus insignis sp. n. was located in the gills of the host forming plasmodia inside the secondary gill lamellae. The spores had a thick wall (1.5-2 µm) all around their body, and the valves were symmetrical and smooth. The spores were a little longer than wide, with rounded extremities, in frontal view, and oval in lateral view. They were 14.5 (14-15) µm long by 11.3 (11-12) µm wide and 7.8 (7-8) µm thick. Some spores showed the presence of a triangular thickening of the internal face of the wall near the posterior end of the polar capsules. This thickening could occur in one of the sides of the spore or in both sides. The polar capsules were large and equal in size surpassing the midlength of the spore. They were oval with the posterior extremity rounded, and converging anteriorly with tapered ends. They were 7.6 (7-8) µm long by 4.2 (3-5) µm wide, and the polar filament formed 6 coils slightly obliquely to the axis of the polar capsule. An intercapsular appendix was present. There was no mucous envelope or distinct iodinophilous vacuole.
Resumo:
Historically, scientists in Brazil has significantly contributed to the biology, cultivation and structural organization of the pathogenic protozoan Toxoplasma gondiiand its interaction with host cells, starting with the description of the protozoan by Splendore in 1908. The intracellular and extracellular corpuscoli observed in rabbits, corresponded to what we now as tachyzoites. Later on, a pioneering method to grow T. gondii in tissue cultures was developed by Guimarães and Meyer, 1942. They also observed for the first time T. gondii by transmission electron microscopy and made the initial description of the cytoskeleton of T. gondii by observing negatively stained cells. In the 1980's, the relation of the cytoskeleton with the sub-pellicular microtubules was reveled by freeze-fracture. More recently, several Brazilian groups have analyzed in detail basic aspects of the early interaction of the protozoan with the host cell, such as the role of protein phosphorylation, transfer of host cell surface components to the protozoan and genesis and organization of the parasitophorous vacuole. Tachyzoites strategically inhibit nitric oxide production during active invasion of activated macrophages. In vitro studies on the sexual cycle of T. gondii using primary cultures of cat enterocytes and the egress from host cells are being carried out. Perspectives are that the contribution of Brazilian science to the knowledge on T. gondii biology will continue to flourish in years to come.
Resumo:
Infection by the protozoan parasite Toxoplasma gondii is widely prevalent in humans and animals. To prevent human infection, all meat should be well cooked before consumption, since the parasite is present in skeletal muscle. In this context, the use of skeletal muscle cells (SkMCs) as a cellular model opens up new approaches to investigate T. gondii-host cell interactions. Immunofluorescent detection of proteins that are stage-specific for bradyzoites indicated that complete cystogenesis of T. gondii in in vitro cultures of SkMCs occurs after 96 h of infection. Ultrastructural analysis showed that, after 48 h of interaction, there were alterations on the parasitophorous vacuole membrane, including greater thickness and increased electron density at the inner face of the membrane. The present study demonstrates the potential use of primary cultures of SkMCs to evaluate different molecular aspects of T. gondii invasion and cystogenesis and presents a promising in vitro model for the screening of drug activities toward tissue cysts and bradyzoites.
Resumo:
Although the predilection for Toxoplasma gondii to form cysts in the nervous system and skeletal and heart muscles has been described for more than fifty years, skeletal muscle cells (SkMCs) have not been explored as a host cell type to study the Toxoplasma-host cell interaction and investigate the intracellular development of the parasite. Morphological aspects of the initial events in the Toxoplasma-SkMC interaction were analysed and suggest that there are different processes of protozoan adhesion and invasion and of the subsequent fate of the parasite inside the parasitophorous vacuole (PV). Using scanning electron microscopy,Toxoplasma tachyzoites from the mouse-virulent RH strain were found to be attached to SkMCs by the anterior or posterior region of the body, with or without expansion of the SkMC membrane. This suggests that different types of parasite internalization occurred. Asynchronous multiplication and differentiation of T. gondii were observed. Importantly, intracellular parasites were seen to display high amounts of amylopectin granules in their cytoplasm, indicating that tachyzoites of the RH strain were able to differentiate spontaneously into bradyzoites in SkMCs. This stage conversion occurred in approximately 3% of the PVs. This is particularly intriguing as tachyzoites of virulent Toxoplasma strains are not thought to be prone to cyst formation. We discuss whether biological differences in host cells are crucial to Toxoplasma stage conversion and suggest that important questions concerning the host cell type and its relevance in Toxoplasma differentiation are still unanswered.