4 resultados para User interfaces (Computer systems)
em Scielo Saúde Pública - SP
Resumo:
This paper presents the development of a two-dimensional interactive software environment for structural analysis and optimization based on object-oriented programming using the C++ language. The main feature of the software is the effective integration of several computational tools into graphical user interfaces implemented in the Windows-98 and Windows-NT operating systems. The interfaces simplify data specification in the simulation and optimization of two-dimensional linear elastic problems. NURBS have been used in the software modules to represent geometric and graphical data. Extensions to the analysis of three-dimensional problems have been implemented and are also discussed in this paper.
Resumo:
The present study aimed at evaluating the use of Artificial Neural Network to correlate the values resulting from chemical analyses of samples of coffee with the values of their sensory analyses. The coffee samples used were from the Coffea arabica L., cultivars Acaiá do Cerrado, Topázio, Acaiá 474-19 and Bourbon, collected in the southern region of the state of Minas Gerais. The chemical analyses were carried out for reducing and non-reducing sugars. The quality of the beverage was evaluated by sensory analysis. The Artificial Neural Network method used values from chemical analyses as input variables and values from sensory analysis as output values. The multiple linear regression of sensory analysis values, according to the values from chemical analyses, presented a determination coefficient of 0.3106, while the Artificial Neural Network achieved a level of 80.00% of success in the classification of values from the sensory analysis.
Resumo:
The augmented reality (AR) technology has applications in many fields as diverse as aeronautics, tourism, medicine, and education. In this review are summarized the current status of AR and it is proposed a new application of it in weed science. The basic algorithmic elements for AR implementation are already available to develop applications in the area of weed economic thresholds. These include algorithms for image recognition to identify and quantify weeds by species and software for herbicide selection based on weed density. Likewise, all hardware necessary for AR implementation in weed science are available at an affordable price for the user. Thus, the authors propose weed science can take a leading role integrating AR systems into weed economic thresholds software, thus, providing better opportunities for science and computer-based weed control decisions.