44 resultados para Upland buzzard ( Buteo hemilasius)
em Scielo Saúde Pública - SP
Resumo:
Against the background of a growing world population, rice (Oryza sativa L.) consumption is expected to grow faster than its production. Therefore, an appropriate question would be: how to increase productivity in the short-term? In this respect, it becomes important the implementation of modern agricultural production systems, such as upland rice with supplemental sprinkler irrigation. Additional information is needed to maximize the available resources, with special attention given to research on the use of nitrogen. This study aimed to evaluate the agronomic performance of commercial rice cultivars with different plant characteristics in upland conditions with supplemental sprinkler irrigation, when subjected to nitrogen in topdress application at the R1 stage (panicle differentiation). The experiment was arranged in a randomized block with split plot design, with 65 treatments, consisting of the combination of 13 cultivars in the plots, and five nitrogen levels in the subplots (0, 40, 80, 120 and 160 kg ha-1), with four replications. Genetic variability was detected among rice cultivars and the agronomic performance in response to the applied nitrogen. The topdressing application of nitrogen increases, in general, the production components and grain yield in rice. Cultivars BRS Primavera, Caiapó and IAC 202 stood out for grain yield, followed by Baldo, Carnaroli, BRS Curinga and IAC 500 with lower yields.
Resumo:
A large-scale inventory of trees > 10cm DBH was conducted in the upland "terra firme" rain forest of the Distrito Agropecuário da SUFRAMA (Manaus Free Zone Authority Agricultural District) approximately 65Km north of the city of Manaus (AM), Srasil. Thegeneral appearance and structure of the forest is described together with local topography and soil texture. Thepreliminary results of the Inventory provide a minimum estimate of 698 tree species in 53 families in the 40Km radius sampled, including 17 undescribed species. Themost numerically abundant families, Lecythidaceae, Leguminosae, 5apotaceae and Burseraceae as also among the most species rich families. One aspect of this diverse assemblage is the proliferation of species within certain genera, Including 26 genera In 17 families with 6 or more species or morphospecies. Most species have very low abundances of less than 1 tree per hectare. While more abundant species do exist at densities ranging up to a mean of 12 trees per ha, many have clumped distributions leading to great variation in local species abundance. The degree of similarity between hectare samples based int the Coefficient of Community similarity Index varies widely over different sample hectares for five ecologically different families. Soil texture apparently plays a significant role In determining species composition in the different one hectare plots examined while results for other variable were less consistent. Greater differences in similarity indices are found for comparisons with a one hectare sample within the same formation approximately 40Km to the south. It is concluded that homogeneity of tree community composition within this single large and diverse yet continuous upland forest formation can not be assumed.
Resumo:
Soil water storage of Central Amazonian soil profiles in upland forest plots subjected to selective logging (in average, 8 trees or 34, 3 m³ of timber per hectare were removed) was measured in four layers, down to a depth of 70 cm. The study lasted 27-months and was divided in two phases: measurements were carried out nearly every week during the first 15 months; in the following year, five intensive periods of measurements were performed. Five damage levels were compared: (a) control (undisturbed forest plot); (b) centre of the clearing/gap; (c) edge of the gap; (d) edge of the remaining forest; and (e) remaining forest. The lowest values for water storage were found in the control (296 ± 19.1 mm), while the highest were observed (333 ± 25.8 mm) in the centre of the gap, during the dry period. In the older gaps (7.5-8.5 year old), soil water storage was similar to the remaining and the control forest, indicating a recovery of hydric soil properties to nearly the levels prior to selective logging.
Resumo:
Nitrogen is the most important nutrient for rice (Oryza sativa L) yields. This study aimed to evaluate the response of upland rice cultivars to N rate and application times in a randomized block design, in subdivided plots with four replications. The studied factors were five rice cultivars (BRS MG Curinga, BRS Monarca, BRS Pepita, BRS Primavera, and BRS Sertaneja), three application times (100 % at planting, 50 % at planting - 50 % at tillering and 100 % at tillering) and four N rates (0, 50, 100, and 150 kg ha-1). All cultivars responded to increased rates and different times of N application, especially BRS Primavera and BRS Sertaneja, which were the most productive when 50 % N rates were applied at sowing and 50 % at tillering. The response of cultivar BRS Monarca to N fertilization was best when 100 % of the fertilizer was applied at tillering.
Resumo:
The grain yield of upland rice under no-tillage has been unsatisfactory and one reason could be the nitrate/ammonium balance in the soil. Cover crops and nitrogen fertilization can be used to change the nitrate/ammonium relation in the soil and improve conditions for the development of upland rice in the no-tillage (NT) system. The aim was to study the effect of cover crops and nitrogen sources on grain yield of upland rice under no tillage. The study was carried out on the Fazenda Experimental Lageado, in Botucatu, State of São Paulo, Brazil, in an Oxisol area under no-tillage for six years. The experiment was arranged in a randomized block split-plot design with four replications. The plots consisted of six cover crop species (Brachiaria brizantha, B. decumbens, B. humidicola, B. ruziziensis, Pennisetum americanum, and Crotalaria spectabilis) and the split-plots of seven forms of N fertilizer management. Millet is the best cover crop to precede upland rice under NT. The best form of N application, as nitrate, is in split rates or total rate at topdressing or an ammonium source with or without a nitrification inhibitor, in split doses. When the cover crops C. spectabilis, B. brizantha, B. decumbens, B. humidicola, and B. ruziziensis preceded rice, they induced the highest grain yield when rice was fertilized with N as ammonium sulfate source + nitrification inhibitor in split rates or total dose at topdressing.
Resumo:
The influence of K2O (0, 40, 80, 120 kg ha-1) at varying rates of N application (0, 30, 60 kg ha-1) at planting, on panicle blast (Pyricularia grisea (Cooke) Sacc.) was studied in a field experiment conducted during three consecutive years with the upland rice cultivar Douradão. Panicle blast severity decreased with increasing rates of potassium in the absence of nitrogen (N0). The relationship between panicle blast and K rates was quadratic at 30 kg ha-1 of nitrogen. Significant response to K fertilization was not obtained at 60 kg ha-1 of nitrogen in relation to panicle blast severity.
Resumo:
The degree of blast resistance of upland rice (Oryza sativa L.) cultivar Araguaia has decreased over time causing significant yield losses. The major objective of this study was to obtain blast (Pyricularia grisea) resistant somaclones, adapting greenhouse and field selection procedures. Rice blast resistance and agronomic traits were assessed in R2 to R6 generations derived from regenerant plants (R1) from immature panicles of Araguaia. The evaluation and selection procedures include testing of early segregating populations and fixed lines in the advanced generations, under natural field conditions, and artificial inoculations in the greenhouse, with prevalent races IB-1 and IB-9 of P. grisea. Somaclones with both vertical resistance and slow blasting resistance were obtained. Twenty of 31 somaclones developed with a high degree of vertical resistance and fan shaped plant type maintained resistance in field and blast nursery tests in the R6 generation. Greenhouse selection with two specific physiologic races yielded 44 somaclones with slow blasting resistance, similar plant type and yield potential as that of Araguaia.
Resumo:
Field experiments involving upland rice genotypes, sown in various dates in late season, were carried out to assess the relationship of carbon isotope discrimination with grain yield and drought resistance. In each one of the three years, one trial was kept under good water availability, while other suffered water shortage for a period of 18-23 days, encompassing panicle emergence and flowering. Drought stress reduced carbon isotope discrimination measured on soluble sugars (deltas) extracted from stem uppermost internode at the end of the imposition period, but had relatively less effect on bulk dry matter of leaves, sampled at the same period, or that of uppermost internodes and grains, sampled at harvest. The drought-induced reduction in deltas was accompanied of reduced spikelet fertility and grain yield. In the three trials subjected to drought, genotypes with the highest yield and spikelet fertility had the lowest deltas. However, this relationship was weak and it was concluded that deltas is not a sufficiently reliable indicator of rice drought resistance to be useful as a screening test in breeding programs. On the other hand, grain yield and spikelet fertility of genotypes which were the soonest to reach 50% flowering within the drought imposition period, were the least adversely affected by drought. Then, timing of drought in relation to panicle emergence and to flowering appeared to be a more important cause of yield variation among genotypes than variation in deltas.
Resumo:
Phenotypic virulence analysis was made on population of Pyricularia grisea isolates collected from 10 upland cultivars in three distinct rice breeding sites, with the objective of studying the degree of similarity in the phenotypic virulence among the isolates, the composition of races, and their virulence pattern. Sixteen races were identified based on the reaction type on eight standard international differentials, the predominant ones being IB9 and IB41. The virulence frequency was high on IAC47 and IAC165 among medium and early maturing cultivars, respectively. The frequency of isolates virulent was greater on upland rice cultivars (51.1%) than on irrigated rice cultivars (21.8%). Both virulent and avirulent isolates were present in the population of P. grisea to the known genes in the near isogenic lines. Of72test isolates, 94.4% were virulent for genes Pi3 and Pi4a. Thevirulence frequencies were relatively lower in decreasing order on Pi1, Pi4b and Pi2. Thecoefficient of similarity ranged from 0.28 to1.0 among the isolates pertaining to different races, while within the race IB9, it varied from 0.56 to1.0. Considering the coefficient of similarity of 0.81, 72% of isolates of race IB9 exhibited similar pattern of virulence.
Resumo:
The objective of this work was to evaluate the resistance spectra of six elite breeding lines of rice, developed for improved yield and grain quality, in inoculation tests in the greenhouse and in the field. Forty-six isolates of Pyricularia grisea collected from the cultivar Primavera, 31 from the cultivar Maravilha and 19 from six elite breeding lines, totaling 96 were utilized for inoculations. Out of 11 international and 15 Brazilian pathotypes, IC-1, IB-9, and BD-16, respectively, were identified as most frequent isolates collected from the cultivar Primavera. The isolates retrieved from Maravilha belong to four international and 11 Brazilian pathotypes, the predominant ones being IB-9 and IB-49 and BB-1 and BB-21, respectively. Lines CNAs 8711 and CNAs 8983 showed resistant reaction to all test isolates from Maravilha, while CNAs 8983 was susceptible to three isolates of Primavera pertaining to the pathotype IC-1. A majority of isolates exhibiting compatible reaction to Primavera were incompatible to Maravilha and vice-versa.Field assessment of rice blast utilizing the area under disease progress curve as a criterion for measuring disease severity showed significant differences among the six breeding lines. The isolates of P. grisea exhibiting differential reaction on breeding lines can be utilized in pyramiding resistance genes in new upland rice cultivars.
Resumo:
The objective of this work was to evaluate Zn use efficiency by upland rice genotypes. The experiment was carried out in a greenhouse, with ten upland rice genotypes grown on an Oxisol (Typic Hapludox) with no application, and with application of 10 mg kg-1 Zn, applied as zinc sulfate. Shoot dry weight, grain yield, Zn harvest index, Zn concentration in shoot and in grain were significantly influenced by soil Zn levels and genotypes. However, panicle number and grain harvest index were significantly affected only by genotype. Genotypes CNA8557, CNA8540 and IR42 produced higher grain yield than other genotypes. Genotypes showed significant variability in Zn recovery efficiency. On average, 13% of the applied Zn was recovered by upland rice genotypes. Genotypes with high Zn recovery efficiency could be used in breeding of Zn efficient upland rice cultivars. Higher level of soil Zn (10 mg kg-1) increased significantly the concentrations of plant Cu and Mn. However, Fe concentrations in plant (shoot and grain) were not influenced by soil Zn levels.
Resumo:
The objective of this work was to evaluate the effect of biochar made from Eucalyptus on soil fertility, and on the yield and development of upland rice. The experiment was performed during two years in a randomized block design with four replicates, in a sandy loam Dystric Plinthosol. Four doses of NPK 05-25-15, annually distributed in stripes (0, 100, 200 and 300 kg ha-1), and four doses of biochar (0, 8, 16 and 32 Mg ha-1), applied once in the first year - alone or with NPK - were evaluated. In the first year, biochar positively affected soil fertility [total organic carbon (TOC), Ca, P, Al, H+Al, and pH], at 0-10 cm soil depth, and it was the only factor with significant effect on yield. In the second year, the effect of biochar diminished or was overcome by the fertilizer. TOC moved down in the soil profile to the 0-20 cm depth, influencing K availability in this layer. In the second year, there was a significant interaction between biochar and the fertilizer on plant growth and biomass dry matter accumulation.
Resumo:
The objective of this work was to evaluate the effect of eucalyptus biochar on the transpiration rate of upland rice 'BRSMG Curinga' as an alternative means to decrease the effect of water stress on plant growth and development. Two-pot experiments were carried out using a completely randomized block design, in a split-plot arrangement, with six replicates. Main plots were water stress (WS) and no-water stress (NWS), and the subplots were biochar doses at 0, 6, 12 and 24% in growing medium (sand). Total transpirable soil water (TTSW), the p factor - defined as the average fraction of TTSW which can be depleted from the root zone before water stress limits growth -, and the normalized transpiration rate (NTR) were determined. Biochar addition increased TTSW and the p factor, and reduced NTR. Consequently, biochar addition was able to change the moisture threshold (p factor) of the growing medium, up to 12% maximum concentration, delaying the point where transpiration declines and affects yield.
Resumo:
The objective of this work was to evaluate gas exchange rates, plant height, yield components, and productivity of upland rice, as affected by type and application time of plant growth regulators. A randomized block design, in a 4x2 factorial arrangement, with four replicates was used. Treatments consisted of three growth regulators (mepiquat chloride, trinexapac-ethyl, and paclobutrazol), besides a control treatment applied at two different phenological stages: early tillering or panicle primordial differentiation. The experiment was performed under sprinkler-irrigated field conditions. Net CO2 assimilation, stomatal conductance, plant transpiration, and water-use efficiency were measured four times in Primavera upland rice cultivar, between booting and milky grain phenophases. Gas exchange rates were neither influenced by growth regulators nor by application time. There was, however, interaction between these factors on the other variables. Application of trinexapac-ethyl at both tillering and differentiation stages reduced plant height and negatively affected yield components and rice productivity. However, paclobutrazol and mepiquat chloride applied at tillering, reduced plant height without affecting rice yield. Mepiquat chloride acted as a growth stimulator when applied at the differentiation stage, and significantly increased plant height, panicle number, and grain yield of upland rice.
Resumo:
The objective of this work was to evaluate the effect of cover crops and their desiccation times on upland rice yield and on the levels of nitrate and ammonium in a no-tillage soil. The experiment was carried out in a randomized blocks, with split plots and three replicates. Cover crops (plots) were sowed in the off-season (March 2009). In November 2009, at 30, 20, 10 and 0 days before rice sowing (split plots), herbicide was applied on the cover crops (fallow, Panicum maximum, Urochloa ruziziensis, U. brizantha and millet). Straw and soil were sampled (0 - 10 cm) at the sowing day, and after 7, 14, 21, 28 and 35 days. Straws from millet and fallow were degraded more rapidly and provided the lowest level of nitrate in the soil. Urochloa ruziziensis, U. brizantha and P. maximum produced higher amounts of dry matter, and provided the highest levels of nitrate in the soil. Millet provides the lowest nitrate/ammonium ratio and the highest upland rice yield. Desiccations carried out at 30 and 20 days before sowing had the largest levels of nitrate in the soil at the sowing date. Nitrogen content and forms in the soil are affected by cover crops and their desiccation times.