8 resultados para Underwater sensor networks
em Scielo Saúde Pública - SP
Experimental evaluation of the performance of a wireless sensor network in agricultural environments
Resumo:
The aim of this study was to perform an experimental study to evaluate the proper operation distance between the nodes of a wireless sensor network available on the market for different agricultural crops (maize, physic nut, eucalyptus). The experimental data of the network performance offers to farmers and researchers information that might be useful to the sizing and project of the wireless sensor networks in similar situations to those studied. The evaluation showed that the separation of the nodes depends on the type of culture and it is a critical factor to ensure the feasibility of using WSN. In the configuration used, sending packets every 2 seconds, the battery life was about four days. Therefore, the autonomy may be increased with a longer interval of time between sending packets.
Resumo:
Soil surveys are the main source of spatial information on soils and have a range of different applications, mainly in agriculture. The continuity of this activity has however been severely compromised, mainly due to a lack of governmental funding. The purpose of this study was to evaluate the feasibility of two different classifiers (artificial neural networks and a maximum likelihood algorithm) in the prediction of soil classes in the northwest of the state of Rio de Janeiro. Terrain attributes such as elevation, slope, aspect, plan curvature and compound topographic index (CTI) and indices of clay minerals, iron oxide and Normalized Difference Vegetation Index (NDVI), derived from Landsat 7 ETM+ sensor imagery, were used as discriminating variables. The two classifiers were trained and validated for each soil class using 300 and 150 samples respectively, representing the characteristics of these classes in terms of the discriminating variables. According to the statistical tests, the accuracy of the classifier based on artificial neural networks (ANNs) was greater than of the classic Maximum Likelihood Classifier (MLC). Comparing the results with 126 points of reference showed that the resulting ANN map (73.81 %) was superior to the MLC map (57.94 %). The main errors when using the two classifiers were caused by: a) the geological heterogeneity of the area coupled with problems related to the geological map; b) the depth of lithic contact and/or rock exposure, and c) problems with the environmental correlation model used due to the polygenetic nature of the soils. This study confirms that the use of terrain attributes together with remote sensing data by an ANN approach can be a tool to facilitate soil mapping in Brazil, primarily due to the availability of low-cost remote sensing data and the ease by which terrain attributes can be obtained.
Resumo:
Soil information is needed for managing the agricultural environment. The aim of this study was to apply artificial neural networks (ANNs) for the prediction of soil classes using orbital remote sensing products, terrain attributes derived from a digital elevation model and local geology information as data sources. This approach to digital soil mapping was evaluated in an area with a high degree of lithologic diversity in the Serra do Mar. The neural network simulator used in this study was JavaNNS and the backpropagation learning algorithm. For soil class prediction, different combinations of the selected discriminant variables were tested: elevation, declivity, aspect, curvature, curvature plan, curvature profile, topographic index, solar radiation, LS topographic factor, local geology information, and clay mineral indices, iron oxides and the normalized difference vegetation index (NDVI) derived from an image of a Landsat-7 Enhanced Thematic Mapper Plus (ETM+) sensor. With the tested sets, best results were obtained when all discriminant variables were associated with geological information (overall accuracy 93.2 - 95.6 %, Kappa index 0.924 - 0.951, for set 13). Excluding the variable profile curvature (set 12), overall accuracy ranged from 93.9 to 95.4 % and the Kappa index from 0.932 to 0.948. The maps based on the neural network classifier were consistent and similar to conventional soil maps drawn for the study area, although with more spatial details. The results show the potential of ANNs for soil class prediction in mountainous areas with lithological diversity.
Resumo:
A evapotranspiração define a perda total de água do sistema solo-planta para a atmosfera. Nas áreas agrícolas, particularmente onde se pratica algum tipo de irrigação, a determinação da evapotranspiração, por via de sensoriamento remoto, vem ganhando cada vez mais importância, pois possibilita identificar a eficiência com que a água tem sido utilizada. Nesse contexto, este trabalho tem o objetivo de determinar a evapotranspiração real diária (ETr diária), com a utilização de produtos do sensor MODIS, nas sub-bacias do Ribeirão Entre Ribeiros e Rio Preto, que ficam entre os Estados de Goiás e Minas Gerais. O SEBAL (Surface Energy Balance Algorithm for Land) foi utilizado para a obtenção da ETr diária em quatro dias diferentes, no período de julho a outubro de 2007. Os resultados encontrados foram compatíveis com os citados em outras literaturas e a comparação entre a evapotranspiração, obtida pelo SEBAL, e a evapotranspiração da cultura (ETc) demonstraram que esse algoritmo pode ser utilizado como boa opção para determinar, com a utilização de produtos do sensor MODIS, a evapotranspiração diária nas condições das sub-bacias do ribeirão Entre Ribeiros e rio Preto.
Resumo:
ABSTRACT The efficiency of nitrogen fertilizer in corn is usually low, negatively affecting plant nutrition, the economic return, and the environment. In this context, a variable rate of nitrogen, prescribed by crop sensors, has been proposed as an alternative to the uniform rate of nitrogen traditionally used by farmers. This study tested the hypothesis that variable rate of nitrogen, prescribed by optical sensor, increases the nitrogen use efficiency and grain yield as compared to uniform rate of nitrogen. The following treatments were evaluated: 0; 70; 140; and 210 kg ha-1 under uniform rate of nitrogen, and 140 kg ha -1 under variable rate of nitrogen. The nitrogen source was urea applied on the soil surface using a distributor equipped with the crop sensor. In this study, the grain yield ranged from 10.2 to 15.5 Mg ha-1, with linear response to nitrogen rates. The variable rate of nitrogen increased by 11.8 and 32.6% the nitrogen uptake and nitrogen use efficiency, respectively, compared to the uniform rate of nitrogen. However, no significant increase in grain yield was observed, indicating that the major benefit of the variable rate of nitrogen was reducing the risk of environmental impact of fertilizer.
Resumo:
In order to sustain their competitive advantage in the current increasingly globalized and turbulent context, more and more firms are competing globally in alliances and networks that oblige them to adopt new managerial paradigms and tools. However, their strategic analyses rarely take into account the strategic implications of these alliances and networks, considering their global relational characteristics, admittedly because of a lack of adequate tools to do so. This paper contributes to research that seeks to fill this gap by proposing the Global Strategic Network Analysis - SNA - framework. Its purpose is to help firms that compete globally in alliances and networks to carry out their strategic assessments and decision-making with a view to ensuring dynamic strategic fit from both a global and relational perspective.
Resumo:
This study demonstrates and applies a social network methodology for studying the dynamics of hierarchies in organizations. Social network (blockmodel) analysis of verbal networks in four hospitals contrasted hierarchical and structurally equivalent partitions of the sociomatrices of frequent ties and perceptions of organizational culture. It was found that the verbal networks in these organizations follow a center periphery pattern rather than a hierarchical logic and that perceptions of culture vary more by verbal network than by formal hierarchy. The perceptions of culture of central groups in one organization are much like those of peripheral groups in another. In all four hospitals, structurally equivalent social networks are more important in predicting subcultures than are hierarchical groupings and hierarchy has a limited impact on the development of verbal networks. These findings suggest the value of an amoeba rather than a pyramid metaphor in interpreting the cultures and relational structures of organizations.