81 resultados para UNIAXIAL COMPRESSION
em Scielo Saúde Pública - SP
Resumo:
Studies of soils in Environmental Protection Areas (EPAs) are of great importance, because they are an essential component of ecosystems, directly interfering in environmental sustainability. The objective of this study was to evaluate the structural quality of soil cultivated with coffee and used as pasture in the Capituva's River microbasin, which is located in the Environmental Protection Area in Coqueiral, south of the state of Minas Gerais. Uniaxial compression test (preconsolidation test) and soil resistance to penetration were used. Undisturbed samples were taken from the surface layer (0-5 cm) of the soils in the area: a typic dystrophic Red Latosol (LVd - Oxisol), a typic eutrophic Red Argisol (PVe - Ultisol), and a typic dystrophic Haplic Cambisol (CXbd - Inceptisol). A significant linear positive correlation was observed between the results of the preconsolidation test and soil resistance to penetration. Load bearing capacity of soil could be estimated accordingly by means of penetration resistance for LVd, PVe, and CXbd. Cambisol - CXbd showed lower loading support capacity and resistance to penetration than LVd and PVe, due to the better crop management in this soil that resulted in higher physical quality which accounts for higher production and environmental sustainability.
Resumo:
The agricultural potential of Latosols of the Brazilian Cerrado region is high, but when intensively cultivated under inappropriate management systems, the porosity can be seriously reduced, leading to rapid soil degradation. Consequently, accelerated erosion and sedimentation of springs and creeks have been observed. Therefore, the objective of this study was to evaluate structural changes of Latosols in Rio Verde, Goiás, based on the Least Limiting Water Range (LLWR), and relationships between LLWR and other physical properties. Soil samples were collected from the B horizons of five oxidic Latosols representing the textural variability of the Latosols of the Cerrado biome. LLWR and other soil physical properties were determined at various soil compaction degrees induced by uniaxial compression. Soil compaction caused effects varying from enhanced plant growth due to higher water retention, to severe restriction of edaphic functions. Also, inverse relationships were observed between clay content and bulk density values (Bd) under different structural conditions. Bd values corresponding to critical soil macroporosity (BdcMAC) were more restrictive to a sustainable use of the studied Latosols than the critical Bd corresponding to LLWR (BdcLLWR). The high tolerable compression potential of these oxidic Latosols was related to the high aeration porosity associated to the granular structure.
Resumo:
Incongruous management techniques have been associated with some significant loss of agricultural land to degradation in many parts of the world. Land degradation results in the alteration of physical, chemical and biological properties of the soil, thereby posing a serious threat to sustainable agricultural development. In this study, our objective is to evaluate the changes in a Cambisol structure under six land use systems using the load bearing capacity model. Sampling was conducted in Amazonas Region, Brazil, in the following land use: a) young secondary forest; b) old secondary forest; c) forest; d) pasture; e) cropping, and f) agroforestry. To obtain the load bearing capacity models the undisturbed soil samples were collected in those land use systems and subjected to the uniaxial compression test. These models were used to evaluate which land use system preserved or degraded the Cambisol structure. The results of the bulk density and total porosity of the soil samples were not adequate to quantify structural degradation in Cambisol. Using the forest topsoil level (0-0.03 m) as a reference, it was observed that pasture land use system was most severe in the degradation of the soil structure while the structure were most preserved under old secondary forest, cropping system and forest. At the subsoil level (0.10-0.13 m depth), the soil structure was most degraded in the cropping land use system while it was most preserved in young secondary forest and pasture. At the 0.20-0.23 m depth, soil structure degradation was most severe in the old secondary forest system and well preserved in young secondary forest, cropping and agroforestry.
Resumo:
Soil compaction is one of the main degradation causes, provoked by inappropriate agricultural practices that override the limitations of the soil physical properties. Preconsolidation pressure and penetration resistance have proved effective as alternative to assess and identify soil compaction. Based on the interpretation of these physico-mechanical parameters, compaction can be prevented with a better adjusted soil management. This study was performed to generate preconsolidation pressure and penetration resistance models for Latososlo Vermelho-Amarelo distrófico (Oxisol) under various managements and uses; and evaluate which of these would lead to degradation or degradation susceptibility. The study was carried out in Curvelo, MG. Two managements and one land use were evaluated: no-tillage, sheep grazing and natural forest. Undisturbed soil samples collected from the 0-5 cm layer were subjected to uniaxial compression and penetration resistance tests. Preconsolidation pressure models for forest and no-tillage soils were not statistically different, demonstrating a low degradation potential in no-tillage systems. Preconsolidation pressure was higher in soil under sheep grazing at all water retention tensions and penetration resistance values were higher than under native forest indicating animal trampling as a potential degradation factor. Neither management presented penetration resistance values above 2 MPa at field capacity moisture. Only under sheep grazing the soil penetrability was near 2 MPa at field capacity and values greater than 2 MPa at 0.2 kg kg-1.
Resumo:
The objective of this work was to determine, through the use of the bearing capacity model, the traffic effects of the forest harvest operations on the preconsolidation pressure (sigmap), during one cycle of the eucalyptus plantation. The work was conducted using undisturbed soil samples, collected at the surface of the A horizon and in the top of the B horizon of an Udult (PA), Aquox (FX) and Udox (LA) soils. The undisturbed soil samples were used in the uniaxial compression tests. The soil sampling was done before and after the harvest operations. The operations performed with the Forwarder caused greater soil compaction than the ones done with the Feller Büncher and Harvester. The percentage of soil samples, in the region with additional soil compaction, indicated that the Udult was the soil class more susceptible to soil compaction, followed by the Aquox and Udox. Despite Udult is the more susceptible to soil compaction, the regeneration of the soil structure in this soil class was more efficient than in Aquox. The percentage of soil samples with sigmap values in the region with additional soil compaction in 1996, 1998 and 2004, after harvest operations, indicated a sustainable forest exploration in this period.
Effect of wheat flour protein variations on sensory attributes, texture and staling of Taftoon bread
Resumo:
The quality of flat breads depends in part on the textural properties of breads during storage. These properties are largely affected by flour protein quality and quantity. The present study aimed to examine differences between sensory properties, textural and staling of Tandoori breads made from flours of different quality and different quantities of protein. This was implemented by using three flours with 9.4, 11.5 and 13.5% protein contents and different protein qualities shown by Zeleney sedimentation volume 16.25, 22.75 and 23.25 mL respectively. Bread strips were submitted to uniaxial compression between two parallel plates on an Instron Universal Testing machine, and firmness of the breads was determined. Results indicated the differences in the sensory attributes of breads produced by flours of different protein content and quality, demonstrating that high protein high quality flours are not able to sheet and expand under the high temperature - short time conditions employed in Taftoon bread production and are therefore not suitable for this kind of bread. Results showed that flour with 11.5% protein content, produced bread with better sensory characteristics and acceptable storage time.
Resumo:
o método analítico é estudado, em seus aspectos teóricos, visando a sua aplicação em minerais uniaxials. a marcha de cálculo reduz-se a uma equação de segundo grau, em que ambas as raízes representam posições possíveis do eixo ótico. São fornecidas três maneiras diferentes para se fazer a opção entre as duas raízes. Estuda-se também a determinação da birrefringência máxima, cuja expressão, para os uniaxials, assume formas muito simples. Conclui-se, finalmente, que o sinal ótico do mineral é o mesmo sinal da birrefringência da secção tomada na posição inicial de extinção (φ =θ = ψ = 0).
Resumo:
Estuda-se uma nova e simples contrução estereográfica para localização do eixo ótico de minerais uniaxials, na platina universal. São usados dois ângulos: θ, escolhido previamente e com rotação no eixo A4(E-W) da platina universal e ψ, ângulo de extinção medido na platina do microscópio. O método sugere a elaboração de uma tabela, baseada em valores θ e ψ.
Resumo:
The objective of this work was to study the fruit compression behavior aiming to develop new tomato packages. Deformations caused by compression forces were observed inside packages and in individual 'Santa Clara' tomato fruit. The forces applied by a transparent acrylic lever to the fruit surface caused pericarp deformation and the flattened area was proportional to the force magnitude. The deformation was associated to the reduction in the gas volume (Vg), caused by expulsion of the air from the loculus cavity and reduction in the intercellular air volume of the pericarp. As ripening advanced, smaller fractions of the Vg reduced by the compressive force were restored after the stress was relieved. The lack of complete Vg restoration was an indication of permanent plastic deformations of the stressed cells. Vg regeneration (elastic recovery) was larger in green fruits than in the red ones. The ratio between the applied force and the flattened area (flattening pressure), which depends on cell turgidity, decreased during ripening. Fruit movements associated with its depth in the container were observed during storage in a transparent glass container (495 x 355 x 220 mm). The downward movement of the fruits was larger in the top layers because these movements seem to be driven by a summation of the deformation of many fruits in all layers.
Resumo:
An outbreak of compressive myelopathy in cattle associated with the improper use of an oil vaccine is described. Neurological signs were observed in 25 out of 3,000 cattle after 60 days of being vaccinated against foot and mouth disease. The clinical picture was characterized by progressive paralysis of the hind limbs, difficulty in standing up, and sternal recumbency during the course of 2-5 months. A filling defect between the L1 and L3 vertebrae was seen through myelography performed in one of the affected animals. A yellow-gray, granular and irregular mass was observed in four necropsied animals involving the spinal nerve roots and epidural space of the lumbar (L1-L4) spinal cord; the mass was associated with a whitish oily fluid. This fluid was also found in association with necrosis of the longissimus dorsi muscle. Microscopic changes in the epidural space, nerve roots, and spinal musculature were similar and consisted of granulomas or pyogranulomas around circular unstained spaces (vacuoles). These spaces were located between areas of severe diffuse hyaline necrosis of muscle fibers and resembled the drops of oil present in the vaccine.
Resumo:
This paper reports a case of nonpapillary and infiltrative transitional cell carcinoma (TCC) of the urinary bladder with metastasis of lumbar vertebrae and spinal cord compression in an adult female ocelot (Leopardus pardalis), from the Mato Grosso state, Brazil. The ocelot had pelvic limb paralysis and skin ulcers in the posterior region of the body and was submitted to euthanasia procedure. At necropsy was observed a multilobulated and irregular shaped, yellowish to white nodule in the urinary bladder. The nodule had a soft consistency and arised from the mucosa of the urinary bladder extending throughout the muscular layers and the serosa. Nodules of similar appearance infiltrating the vertebral column the at L6 and L7 vertebrae with corresponding spinal canal invasion were also observed. The histological evaluation showed epithelial neoplastic proliferation in the urinary bladder with characteristics of nonpapillary and infiltrative TCC, with positive immunohistochemical staining for pancytokeratin, and strong immunostaining for cytokeratin of low molecular weight, and weak or absent labeling for high molecular weight cytokeratin. This is the first report of TCC of urinary bladder in ocelot in Brazil.
Resumo:
This paper gives a detailed presentation of the Substitution-Newton-Raphson method, suitable for large sparse non-linear systems. It combines the Successive Substitution method and the Newton-Raphson method in such way as to take the best advantages of both, keeping the convergence features of the Newton-Raphson with the low requirements of memory and time of the Successive Substitution schemes. The large system is solved employing few effective variables, using the greatest possible part of the model equations in substitution fashion to fix the remaining variables, but maintaining the convergence characteristics of the Newton-Raphson. The methodology is exemplified through a simple algebraic system, and applied to a simple thermodynamic, mechanical and heat transfer modeling of a single-stage vapor compression refrigeration system. Three distinct approaches for reproducing the thermodynamic properties of the refrigerant R-134a are compared: the linear interpolation from tabulated data, the use of polynomial fitted curves and the use of functions derived from the Helmholtz free energy.
Resumo:
Recombinant human thyrotropin (rhTSH) reduces the activity of radioiodine required to treat multinodular goiter (MNG), but acute airway compression can be a life-threatening complication. In this prospective, randomized, double-blind, placebo-controlled study, we assessed the efficacy and safety (including airway compression) of different doses of rhTSH associated with a fixed activity of 131I for treating MNG. Euthyroid patients with MNG (69.3 ± 62.0 mL, 20 females, 2 males, 64 ± 7 years) received 0.1 mg (group I, N = 8) or 0.01 mg (group II, N = 6) rhTSH or placebo (group III, N = 8), 24 h before 1.11 GBq 131I. Radioactive iodine uptake was determined at baseline and 24 h after rhTSH and thyroid volume (TV, baseline and 6 and 12 months after treatment) and tracheal cross-sectional area (TCA, baseline and 2, 7, 180, and 360 days after rhTSH) were determined by magnetic resonance; antithyroid antibodies and thyroid hormones were determined at frequent intervals. After 6 months, TV decreased significantly in groups I (28.5 ± 17.6%) and II (21.6 ± 17.8%), but not in group III (2.7 ± 15.3%). After 12 months, TV decreased significantly in groups I (36.7 ± 18.1%) and II (37.4 ± 27.1%), but not in group III (19.0 ± 24.3%). No significant changes in TCA were observed. T3 and free T4 increased transiently during the first month. After 12 months, 7 patients were hypothyroid (N = 3 in group I and N = 2 in groups II and III). rhTSH plus a 1.11-GBq fixed 131I activity did not cause acute or chronic changes in TCA. After 6 and 12 months, TV reduction was more pronounced among patients treated with rhTSH plus 131I.
Resumo:
Spinal cord injury is an extremely severe condition with no available effective therapies. We examined the effect of melatonin on traumatic compression of the spinal cord. Sixty male adult Wistar rats were divided into three groups: sham-operated animals and animals with 35 and 50% spinal cord compression with a polycarbonate rod spacer. Each group was divided into two subgroups, each receiving an injection of vehicle or melatonin (2.5 mg/kg, intraperitoneal) 5 min prior to and 1, 2, 3, and 4 h after injury. Functional recovery was monitored weekly by the open-field test, the Basso, Beattie and Bresnahan locomotor scale and the inclined plane test. Histological changes of the spinal cord were examined 35 days after injury. Motor scores were progressively lower as spacer size increased according to the motor scale and inclined plane test evaluation at all times of assessment. The results of the two tests were correlated. The open-field test presented similar results with a less pronounced difference between the 35 and 50% compression groups. The injured groups presented functional recovery that was more evident in the first and second weeks. Animals receiving melatonin treatment presented more pronounced functional recovery than vehicle-treated animals as measured by the motor scale or inclined plane. NADPH-d histochemistry revealed integrity of the spinal cord thoracic segment in sham-operated animals and confirmed the severity of the lesion after spinal cord narrowing. The results obtained after experimental compression of the spinal cord support the hypothesis that melatonin may be considered for use in clinical practice because of its protective effect on the secondary wave of neuronal death following the primary wave after spinal cord injury.