15 resultados para Trasporto aereo, carbon footprint, taxi time, emissioni climalteranti
em Scielo Saúde Pública - SP
Resumo:
ABSTRACT Cocoa is an important commercial crop in the tropics; and estimating the carbon emissions in the producing-areas is a worthwhile effort. The main goal of the current paper was to evaluate the carbon footprint (CF) per kilogram of Colombian cocoa bean produced under conventional and agroforestry managements, following the methods proposed by PAS 2050. In this research, we compared our results to other worldwide researches, showing an overview of the current limitations and challenges involving the CF researches. Our results showed that all calculated environmental burdens were lower for the conventional management. In the agroforestry practice, composting of cocoa pod husks contributed with approximately 34.00E+00 g methane and 2.55E+00 g nitrous oxide emissions per kilogram of cocoa grain produced. Therefore, such practice could reduce CF by 6.00E+00 kg CO2 Eq kg-1, which is certainly a significant amount. These cocoa residues left on the ground have a strong impact on CF of both studied managements due to the anaerobic decomposition of organic matter, which represents more than 85% of emissions. We concluded that both evaluated production processes can emit environmental burdens at the same magnitude. Definitely, there is a widespread need to improve cocoa production system by changing old and less productive plants to the so called clones to ensure cocoa yield and quality worldwide.
Resumo:
Estimates of terrestrial biomass depend critically on reliable information about the specific gravity of the wood of forest trees. The study reported on here was carried out in the southern Peruvian Amazon and involved collection of wood samples from trees (70 spp.) in intact forest stands. Results demonstrate the high degree of variability in specific gravity (ovendry weight/green volume) in trees at single locations. Three forest types (swamp, high terrace forest with alluvial soil, and sandy-soil forest) had values close to the average reported for tropical forest woods (.69). Two early successional forest types, which make up as much as 12% of the total vegetated area in this part of the Amazon, had values significantly lower (.40). An increase in specific gravity with increasing age of the tree, which has been reported in some spe cies of tropical-forest woods, is seen in a positive relationship between specific gravity and di ameter for a species prevalent in one plot. Increases in specific gravity with tree and forest age may be significant in estimating changes in carbon stores over time.
Resumo:
In this work was developed an alternative methodology to separation of aquatic organic matter (AOM) present in natural river waters. The process is based in temperature decreasing of the aqueous sample under controlled conditions that provoke the freezing of the sample and separation of the dark extract, not frozen and rich in organic matter. The results showed that speed of temperature decreasing exerts strongly influence in relative recovery of organic carbon, enrichment and time separation of the organic matter present in water samples. Elemental composition, infrared spectra and thermal analysis results showed that the alternative methodology is less aggressive possible in the attempt of maintaining the integrity of the sample.
Resumo:
Abstract: The aim of this study was to assess the cardiopulmonary effects, the onset time after the administration of a detomidine/ketamine combination, and the recovery from anesthesia of cougars (Puma concolor) anesthetized with detomidine/ketamine and isoflurane or sevoflurane for abdominal ultrasound imaging. Fourteen animals were randomly allocated into two experimental groups: GISO (n=7) and GSEVO (n=7). Chemical restraint was performed using 0.15mg/kg detomidine combined with 5mg/kg ketamine intramuscularly; anesthesia induction was achieved using 2mg/kg propofol intravenously and maintenance with isoflurane (GISO) or sevoflurane (GSEVO). The following parameters were assessed: heart rate, respiratory rate, systolic and diastolic arterial blood pressure, mean arterial blood pressure, oxyhemoglobin saturation, rectal temperature, central venous pressure, and end-tidal carbon dioxide. The time to sternal recumbency (TSR) and time to standing position (TSP) were also determined. There was not statistically significant difference for the cardiopulmonary variables or TSP whereas TSR was significantly shorter in GSEVO. The time to onset of anesthesia was 11.1±1.2 minutes and 11.3±1.8 minutes for GISO and GSEVO, respectively. The anesthesia of cougars with detomidine/ketamine and isoflurane or sevoflurane was conducted with safety, cardiopulmonary stability, and increased time to sternal recumbency in the GISO group.
Resumo:
Three types of carbon dioxide-baited traps, i.e., the Centers for Disease Control Miniature Light Trap without light, the BioGents (BG) Sentinel Mosquito Trap (BG-Sentinel) and the Mosquito Magnet® Liberty Plus were compared with human landing collections in their efficiency in collecting Anopheles (Nyssorhynchus) aquasalis mosquitoes. Of 13,549 total mosquitoes collected, 1,019 (7.52%) were An. aquasalis. Large numbers of Culex spp were also collected, in particular with the (BG-Sentinel). The majority of An. aquasalis (83.8%) were collected by the human landing collection (HLC). None of the trap catches correlated with HLC in the number of An. aquasalis captured over time. The high efficiency of the HLC method indicates that this malaria vector was anthropophilic at this site, especially as carbon dioxide was insufficiently attractive as stand-alone bait. Traps using carbon dioxide in combination with human odorants may provide better results.
Resumo:
The semi-arid region of Chiapas is dominated by N2 -fixing shrubs, e.g., Acacia angustissima. Urea-fertilized soil samples under maize were collected from areas covered and uncovered by A. angustissima in different seasons and N2O and CO2 emissions were monitored. The objective of this study was to determine the effects of urea and of the rainy and dry season on gas emissions from semi-arid soil under laboratory conditions. Urea and soil use had no effect on CO2 production. Nitrons oxide emission from soil was three times higher in the dry than in the rainy season, while urea fertilization doubled emissions. Emissions were twice as high from soil sampled under A. angustissima canopy than from arable land, but 1.2 lower than from soil sampled outside the canopy, and five times higher from soil incubated at 40 % of the water-holding capacity (WHC) than at soil moisture content, but 15 times lower than from soil incubated at 100 WHC. It was found that the soil sampling time and water content had a significant effect on N2O emissions, while N fertilizer and sampling location were less influent.
Resumo:
Soil C-CO2 emissions are sensitive indicators of management system impacts on soil organic matter (SOM). The main soil C-CO2 sources at the soil-plant interface are the decomposition of crop residues, SOM turnover, and respiration of roots and soil biota. The objectives of this study were to evaluate the impacts of tillage and cropping systems on long-term soil C-CO2 emissions and their relationship with carbon (C) mineralization of crop residues. A long-term experiment was conducted in a Red Oxisol in Cruz Alta, RS, Brazil, with subtropical climate Cfa (Köppen classification), mean annual precipitation of 1,774 mm and mean annual temperature of 19.2 ºC. Treatments consisted of two tillage systems: (a) conventional tillage (CT) and (b) no tillage (NT) in combination with three cropping systems: (a) R0- monoculture system (soybean/wheat), (b) R1- winter crop rotation (soybean/wheat/soybean/black oat), and (c) R2- intensive crop rotation (soybean/ black oat/soybean/black oat + common vetch/maize/oilseed radish/wheat). The soil C-CO2 efflux was measured every 14 days for two years (48 measurements), by trapping the CO2 in an alkaline solution. The soil gravimetric moisture in the 0-0.05 m layer was determined concomitantly with the C-CO2 efflux measurements. The crop residue C mineralization was evaluated with the mesh-bag method, with sampling 14, 28, 56, 84, 112, and 140 days after the beginning of the evaluation period for C measurements. Four C conservation indexes were used to assess the relation between C-CO2 efflux and soil C stock and its compartments. The crop residue C mineralization fit an exponential model in time. For black oat, wheat and maize residues, C mineralization was higher in CT than NT, while for soybean it was similar. Soil moisture was higher in NT than CT, mainly in the second year of evaluation. There was no difference in tillage systems for annual average C-CO2 emissions, but in some individual evaluations, differences between tillage systems were noticed for C-CO2 evolution. Soil C-CO2 effluxes followed a bi-modal pattern, with peaks in October/November and February/March. The highest emission was recorded in the summer and the lowest in the winter. The C-CO2 effluxes were weakly correlated to air temperature and not correlated to soil moisture. Based on the soil C conservation indexes investigated, NT associated to intensive crop rotation was more C conserving than CT with monoculture.
Resumo:
Soil organic matter (SOM) plays an important role in carbon (C) cycle and soil quality. Considering the complexity of factors that control SOM cycling and the long time it usually takes to observe changes in SOM stocks, modeling constitutes a very important tool to understand SOM cycling in forest soils. The following hypotheses were tested: (i) soil organic carbon (SOC) stocks would be higher after several rotations of eucalyptus than in low-productivity pastures; (ii) SOC values simulated by the Century model would describe the data better than the mean of observations. So, the aims of the current study were: (i) to evaluate the SOM dynamics using the Century model to simulate the changes of C stocks for two eucalyptus chronosequences in the Rio Doce Valley, Minas Gerais State, Brazil; and (ii) to compare the C stocks simulated by Century with the C stocks measured in soils of different Orders and regions of the Rio Doce Valley growing eucalyptus. In Belo Oriente (BO), short-rotation eucalyptus plantations had been cultivated for 4.0; 13.0, 22.0, 32.0 and 34.0 years, at a lower elevation and in a warmer climate, while in Virginópolis (VG), these time periods were 8.0, 19.0 and 33.0 years, at a higher elevation and in a milder climate. Soil samples were collected from the 0-20 cm layer to estimate C stocks. Results indicate that the C stocks simulated by the Century model decreased after 37 years of poorly managed pastures in areas previously covered by native forest in the regions of BO and VG. The substitution of poorly managed pastures by eucalyptus in the early 1970´s led to an average increase of C of 0.28 and 0.42 t ha-1 year-1 in BO and VG, respectively. The measured C stocks under eucalyptus in distinct soil Orders and independent regions with variable edapho-climate conditions were not far from the values estimated by the Century model (root mean square error - RMSE = 20.9; model efficiency - EF = 0.29) despite the opposite result obtained with the statistical procedure to test the identity of analytical methods. Only for lower soil C stocks, the model over-estimated the C stock in the 0-20 cm layer. Thus, the Century model is highly promising to detect changes in C stocks in distinct soil orders under eucalyptus, as well as to indicate the impact of harvest residue management on SOM in future rotations.
Resumo:
The use of carbon paste electrodes (CPE) of mineral sulfides can be useful for electrochemical studies to overcome problems by using massive ones. Using CPE-chalcopyrite some variables were electrochemically evaluated. These variables were: (i) the atmosphere of preparation (air or argon) of CPE and elapsed time till its use; (ii) scan rate for voltammetric measurements and (iii) chalcopyrite concentration in the CPE. Based on cyclic voltammetry, open-circuit potential and electrochemical impedance results the recommendations are: oxygen-free atmosphere to prepare and kept the CPE until around two ours, scan rates from 10 to 40 mV s-1, and chalcopyrite concentrations > 20%.
Resumo:
Various vegetables as biological catalysts were evaluated in enantioselective reduction of carbonyl compounds. The stereoselectivity of the process was in agreement with Prelog's rule for twelve of the vegetables, whereas okra and green peppers formed anti-Prelog products. Zingiber officinale exhibited the best results with 30% conversion and 89% ee. The parameters of the reaction such as time, solvent and other substrates investigated, as well as the specie, showed good chemo- and enantioselectivity.
Resumo:
The performance of a carbon paste electrode (CPE) modified with SBA-15 nanostructured silica organofunctionalised with 2-benzothiazolethiol for determination of Cu(II) ions in sugar cane spirit (cachaça) is described, based on differential pulse anodic stripping voltammetry (DPASV) procedure. The Cu(II) oxidation peak was observed at 0.03 V (vs. SCE) in phosphate solution (pH 3.0). The results were obtained using optimised conditions such as 100 mV pulse amplitude, 3 min accumulation time, 25 mV s-1 scan rate in phosphate solution pH 3.0, resulting in a linear dynamic range from 8.0 x 10-7 to 1.0 x 10-5 mol L-1 Cu(II) and a limit of detection 2.0 x10-7 mol L-1. Cu(II) spiked in a cachaça sample was determined with 102.5 % mean recovery at mmol L-1 level. Interference from other metallic cations present in the sample was avoided by the standard addition procedure.
Resumo:
To study Assessing the impact of tillage practices on soil carbon losses dependents it is necessary to describe the temporal variability of soil CO2 emission after tillage. It has been argued that large amounts of CO2 emitted after tillage may serve as an indicator for longer-term changes in soil carbon stocks. Here we present a two-step function model based on soil temperature and soil moisture including an exponential decay in time component that is efficient in fitting intermediate-term emission after disk plow followed by a leveling harrow (conventional), and chisel plow coupled with a roller for clod breaking (reduced) tillage. Emission after reduced tillage was described using a non-linear estimator with determination coefficient (R²) as high as 0.98. Results indicate that when emission after tillage is addressed it is important to consider an exponential decay in time in order to predict the impact of tillage in short-term emissions.
Resumo:
Few data are available in the literature regarding the effect of pentosan polysulfate (PPS) on normal and fibrotic rat livers. In addition, the combination of PPS and carbon tetrachloride (CCl4) has not been studied so far. The objective of this study was to assess the effect of PPS on rat livers treated or not with CCl4 for the induction of liver fibrosis. The study consisted of four stages: 1) hepatic fibrosis induction with CCl4 (N = 36 rats); 2) evaluation of the effect of PPS on CCl4-induced hepatic fibrosis (N = 36 rats); 3) evaluation of the effect of higher doses of PPS in combination with CCl4 (N = 50 rats); 4) evaluation of the presence of an enzymatic inductor effect by PPS (N = 18 rats) using the sodium pentobarbital test which indirectly evaluates hepatic microsomal enzyme activity in vivo. Adult (60 to 70 days) male Wistar rats weighing 180 to 220 g were used. All animals receiving 0.5 ml 8% CCl4 (N = 36) developed hepatic fibrosis, and after 8 weeks they also developed cirrhosis. No delay or prevention of hepatic fibrosis was observed with the administration of 5 mg/kg PPS (N = 8) and 1 mg/kg PPS (N = 8) 1 h after the administration of CCl4, but the increased hepatotoxicity resulting from the combination of the two substances caused massive hepatic necrosis in most rats (N = 45). PPS (40 mg/kg) alone caused hepatic congestion only after 8 weeks, but massive hepatic necrosis was again observed in association with 0.5 ml CCl4 after 1 to 4 weeks of treatment. Unexpectedly, sleeping time increased with time of PPS administration (1, 2, or 3 weeks). This suggests that PPS does not function as an activator of the hepatic microsomal enzymatic system. Further studies are necessary in order to clarify the unexpected increase in hepatotoxicity caused by the combination of CCl4 and high doses of PPS, which results in massive hepatic necrosis.
Resumo:
The heme oxygenase-carbon monoxide pathway has been shown to play an important role in many physiological processes and is capable of altering nociception modulation in the nervous system by stimulating soluble guanylate cyclase (sGC). In the central nervous system, the locus coeruleus (LC) is known to be a region that expresses the heme oxygenase enzyme (HO), which catalyzes the metabolism of heme to carbon monoxide (CO). Additionally, several lines of evidence have suggested that the LC can be involved in the modulation of emotional states such as fear and anxiety. The purpose of this investigation was to evaluate the activation of the heme oxygenase-carbon monoxide pathway in the LC in the modulation of anxiety by using the elevated plus maze test (EPM) and light-dark box test (LDB) in rats. Experiments were performed on adult male Wistar rats weighing 250-300 g (n=182). The results showed that the intra-LC microinjection of heme-lysinate (600 nmol), a substrate for the enzyme HO, increased the number of entries into the open arms and the percentage of time spent in open arms in the elevated plus maze test, indicating a decrease in anxiety. Additionally, in the LDB test, intra-LC administration of heme-lysinate promoted an increase on time spent in the light compartment of the box. The intracerebroventricular microinjection of guanylate cyclase, an sGC inhibitor followed by the intra-LC microinjection of the heme-lysinate blocked the anxiolytic-like reaction on the EPM test and LDB test. It can therefore be concluded that CO in the LC produced by the HO pathway and acting via cGMP plays an anxiolytic-like role in the LC of rats.
Resumo:
The aim of this study was to reduce the fermentation time of pizza dough by evaluating the development of the dough during fermentation using a Chopin® rheofermentometer and verifying the influence of time and temperature using a 2² factorial design. The focus was to produce characteristic soft pizza dough with bubbles and crispy edges and soft in the center. These attributes were verified by the Quantitative Descriptive Analysis (QDA). The dough was prepared with the usual ingredients, fermented at a temperature range from 27 to 33 ºC for 30 to 42 minutes, enlarged, added with tomato sauce, baked, and frozen. The influence of the variables time and temperature on the release of carbon dioxide (H'm) was confirmed with positive and significant effect, using a rheofermentometer, which was not observed for the development or maximum height of the dough (Hm). The same fermentation conditions of the experimental design were used for the production of the pizza dough in the industrial process; it was submitted to Quantitative Descriptive Analysis (QDA), in which the samples were described by nine attributes. The results showed that some samples had the desired characteristics of pizza dough, demonstrated by the principal component analysis (PCA), indicating a 30 % fermentation time reduction when compared to the conventional process.