242 resultados para Toxic plant
em Scielo Saúde Pública - SP
Resumo:
A new salicylic acid derivative, pentacosanyl salicylate, was isolated from the leaves of the plant toxic to cattle, Riedeliella graciliflora, in addition to a digalactosyldiacylglycerol (DGDG), 1,2-di-O-α-linolenoyl-3-O-α-D-galactopyranosyl-(1→6)-β-D-galactopyranosyl-glycerol, kaempferol-3-O-β-D-glucopyranoside, kaempferol-3-O-α-L-rhamnopyranoside, quercetin-3-O-α-L-rhamnopyranoside, rutin, (+)-catechin and the dimer (+)-catechin-(4β-8)-catechin, glutinol, squalene, β-sitosterol, stigmasterol, phytol, β-carotene, α-tocopherol and ficaprenol-12. Their structures were determined using spectral techniques (MS, IR, and NMR-1D and 2D) and based on literature data.
Resumo:
The aim of this study was to determine whether goats could be averted from consuming Mascagnia rigida, a toxic plant found in the semiarid region of northeastern Brazil. Fourteen male goats not previously familiarized to M. rigida were randomly allocated to two treatment groups: control (treated with 5.5mL water orally by a drenching gun) and lithium group (treated with 100mg LiCl/kg body weight orally by a drenching gun). For conditioning, goats were allowed to feed on M. rigida leaves for 15 min, followed by LiCl or water administration. The time spent on eating M. rigida leaves was measured. The conditioning was repeated daily until the LiCl-treated goats stopped eating M. rigida. On the 10th, 17th, and 24th day after conditioning, extinction trials of the M. rigida aversion were performed in goats by using single-choice tests. There was no difference between the two treatment groups with respect to the consumption of M. rigida on the first day of aversion conditioning, however, controls ingested increasing amounts of the plant on consecutive conditioning days. On the second day, five out of the seven goats in the lithium group did not eat the leaves, but on the third day, all the goats in the lithium group did not ingest M. rigida. This aversion persisted throughout all evaluated days. This indicates that goats can be easily conditioned by using lithium chloride to avoid eating M. rigida temporarily.
Resumo:
Poiretia punctata (Willd.) Desv. was associated with cattle and sheep poisoning on nine farms in the State of Sergipe, northeastern Brazil. The animals were found dead or died later after showing clinical signs for up to 18 hours. Two sheep that ingested 40g/kg body weight (g/kg) of fresh P. punctata died three and eight hours after ingestion, respectively. Another sheep that ingested 40g/kg five days after plant collection showed mild clinical signs and recovered after 24 hours. Two sheep that received 20g/kg and another that ingested three daily doses of 20g/kg showed clinical signs, but recovered. Two cattle that ingested 20g/kg of the fresh plant exhibited clinical signs and recovered. The clinical observations of poisoning were depression, ataxia, loss of equilibrium, broad-based stance, head down, falls, mandibular trismus, opisthotonous, nystagmus, and recumbence. Significant gross and histologic lesions were not observed. Samples of P. punctata were analyzed for nitrates, cyanogenic glycosides, and sodium monofluouracetate with negative results. It is concluded that P. punctata is a toxic plant that caused death in cattle and sheep in the State of Sergipe.
Resumo:
Toxic effects of essential plant oils in adult Sitophilus oryzae (Linnaeus) (Coleoptera, Curculionidae). Stored grains are subject to losses in quality nutritional value and in sanitation from the time they are stored to the time they are consumed. Botanical insecticides may offer an alternative solution for pest control. The objective was to test the insecticidal properties of the essential oils of Cymbopogon citratus (leaf), Zingiber officinale (root) and Mentha sp. (leaf). The efficacy of these oils was tested to control the rice weevil, S. oryzae, using hydrodistillation. Chemical analysis of the essential oils was carried out by gas chromatography. Major components of C. citratus were geranial (48%) and neral (31%), of Z. officinale were α-zingibereno (13%), geranial (16%), neral (10%) and α-farneseno (5%) and of Mentha sp. was menthol (92%). Bioassays were carried out by fumigation and topical application. In topical application assays, the essential oil of C. citratus had greater toxicity (LC50 0.027 µL mL-1) and shorter exposure time than the oils of the other two plants. After 24 h and 48 h, 70% and 100% mortality of S. oryzae occurred, respectively. In fumigation assays, essential oil of Z. officinale had a lower LC50 (1.18 µL cm-2) and 70% mortality after 24 h exposure. Therefore, we recommend the use of essential oils of C. citratus and Z. officinale to control the rice weevil S. oryzae.
Resumo:
The toxic effect of binary and tertiary combinations of Euphorbia hirta Linn latex powder with other plant molluscicidal compounds, were evaluated against the freshwater snails Lymnaea (Radix) acuminata and Indoplanorbis exustus in pond. These combinations showed significant time and dose dependent effect against both the snails. These compounds at higher doses were also lethal to freshwater fish Channa punctatus (Bloch) (Channidae {Ophicephalidae}), which shares the habitat with these snails, but the LC90 (24h) doses of snails have no apparent killing properties in fish populations when treated in mixed population of snails and fish.
Resumo:
The molluscicidal activity of Bauhinia variegata leaf and Mimusops elengi bark was studied against vector snail Lymnaea acuminata. The toxicity of both plants was time and concentration-dependent. Among organic extracts, ethanol extracts of both plants were more toxic. Toxicity of B. variegata leaf ethanolic extract (96h LC50- 14.4 mg/L) was more pronounced than M. elengi bark ethanolic extract (96h LC50-15.0 mg/L). The 24h LC50 of column purified fraction of B. variegata and M. elengi bark were 20.3 mg/L and 18.3 mg/L, respectively. Saponin and quercetin were characterized and identified as active molluscicidal component. Co-migration of saponin (Rf 0.48) and quercetin (Rf 0.52) with column purified bark of M. elengi and leaf of B. variegata on thin layer chromatography demonstrate same Rf value i.e. 0.48 and 0.52, respectively. The present study clearly indicates the possibility of using M. elengi and/or B. variegata as potent molluscicide.
Resumo:
Introduction Aedes aegypti is responsible for the transmission of the dengue and yellow fever viruses. This study evaluated the effects of extracts from Cnidosculos phyllacanthus, Ricinus communis, and Coutarea hexandra on the developmental periods of A.aegypti larvae and pupae. Crude extracts of C. phyllacanthus and C. hexandra and oil from R. communis and C. phyllacanthus were used. Methods Bioassays of the larvicidal and pupicidal effects of these products at different concentrations and times of exposure were evaluated. The lethal and sublethal effects were determined using different concentrations in larvicidal tests. Mortality data were evaluated by Probit analysis to determine the LC50 and LC90 values. Results The vegetable oils from C. phyllacanthus and R. communis demonstrated greater efficiency for larval control with an LC50=0.28µl/mL and an LC90=1.48µl/mL and LC50=0.029µl/mL and a LC90=0.26µl/mL, respectively. In pupal tests toxic effects for all insects were verified after exposure to the products at significant LC50 and LC90 values for 24 and 48h. The effects of sublethal concentrations of C. phyllacanthus (oil) were more effective on the insects. Conclusions The vegetables oils from C. phyllacanthus and R. communis demonstrated greater potential from the control of different developmental periods in the life cycle of this insect.
Resumo:
Three hundred and thirteen extracts from 136 Brazilian plant species belonging to 36 families were tested for their suppressive activity on phytohemaglutinin (PHA) stimulated proliferation of human peripheral blood mononuclear cells (PBMC). The proliferation was evaluated by the amount of [³H]-thymidine incorporated by the cells. Twenty extracts inhibited or strongly reduced the proliferation in a dose-dependent manner at doses between 10 and 100 µg/ml. Three of these extracts appeared to be non-toxic to lymphocytes, according to the trypan blue permeability assay and visual inspection using optical microscopy. Bioassay-guided fractionation of Alomia myriadenia extract showed that myriadenolide, a labdane diterpene known to occur in this species, could account for the observed activity of the crude extract. Using a similar protocol, an active fraction of the extract from Gaylussacia brasiliensis was obtained. Analysis of the ¹H and13C NMR spectra of this fraction indicates the presence of an acetylated triterpene whose characterization is underway. The extract of Himatanthus obovatus is currently under investigation.
Resumo:
Tachia sp. are used as antimalarials in the Amazon Region and in vivo antimalarial activity of a Tachia sp. has been previously reported. Tachia grandiflora Maguire and Weaver is an Amazonian antimalarial plant and herein its cytotoxicity and antimalarial activity were investigated. Spectral analysis of the tetraoxygenated xanthone decussatin and the iridoid aglyone amplexine isolated, respectively, from the chloroform fractions of root methanol and leaf ethanol extracts was performed. In vitro inhibition of the growth of Plasmodium falciparum Welch was evaluated using optical microscopy on blood smears. Crude extracts of leaves and roots were inactive in vitro. However, chloroform fractions of the root and leaf extracts [half-maximal inhibitory concentration (IC50) = 10.5 and 35.8 µg/mL, respectively] and amplexine (IC50= 7.1 µg/mL) were active in vitro. Extracts and fractions were not toxic to type MRC-5 human fibroblasts (IC50> 50 µg/mL). Water extracts of the roots of T. grandiflora administered by mouth were the most active extracts in the Peters 4-day suppression test in Plasmodium berghei-infected mice. At 500 mg/kg/day, these extracts exhibited 45-59% inhibition five to seven days after infection. T. grandiflora infusions, fractions and isolated substance have potential as antimalarials.
Resumo:
Several species of Aspidosperma plants are used to treat diseases in the tropics, including Aspidosperma ramiflorum, which acts against leishmaniasis, an activity that is experimentally confirmed. The species, known as guatambu-yellow, yellowperoba, coffee-peroba andmatiambu, grows in the Atlantic Forest of Brazil in the South to the Southeast regions. Through a guided biofractionation of A. ramiflorum extracts, the plant activity against Plasmodium falciparum was evaluated in vitro for toxicity towards human hepatoma G2 cells, normal monkey kidney cells and nonimmortalised human monocytes isolated from peripheral blood. Six of the seven extracts tested were active at low doses (half-maximal drug inhibitory concentration < 3.8 µg/mL); the aqueous extract was inactive. Overall, the plant extracts and the purified compounds displayed low toxicity in vitro. A nonsoluble extract fraction and one purified alkaloid isositsirikine (compound 5) displayed high selectivity indexes (SI) (= 56 and 113, respectively), whereas compounds 2 and 3 were toxic (SI < 10). The structure, activity and low toxicity of isositsirikine in vitro are described here for the first time in A. ramiflorum, but only the neutral and precipitate plant fractions were tested for activity, which caused up to 53% parasitaemia inhibition of Plasmodium bergheiin mice with blood-induced malaria. This plant species is likely to be useful in the further development of an antimalarial drug, but its pharmacological evaluation is still required.
Resumo:
The purpose of this study was to evaluate the efficiency of integrated managements on white mold control on common bean. Initially, in vitro testing was made to assess the antagonism of 11 Trichoderma isolates against Sclerotinia sclerotiorum and to investigate fungicides (fluazinam and procymidone) inhibitory effects on those fungi. In two field experiments the following combinations were tested: irrigation frequencies (seven or 14 days), plant densities (six or 12 plants per meter), and three disease controls (untreated control, fungicide or Trichoderma spp.). In a third experiment plant densities were replaced by grass mulching treatments (with or without mulching). Fluazinam was applied at 45 and 55 days after emergence (DAE). The antagonists T. harzianum (experiments 1 and 3) and T. stromatica (experiment 2) were applied through sprinkler irrigation at 10 and 25 DAE, respectively. Most of the Trichoderma spp. were effective against the pathogen in vitro. Fluazinam was more toxic than procymidone to both the pathogen and the antagonist. Fungicide applications increased yield between 32 % and 41 %. In field one application of Trichoderma spp. did not reduce disease intensity and did not increase yield. The reduction from 12 to six plants per meter did not decrease yield, and disease severity diminished in one of the two experiments. It is concluded that of the strategies for white mold control just reduction of plant density and applications of fungicide were efficient.
Resumo:
A better method for determination of shikimate in plant tissues is needed to monitor exposure of plants to the herbicide glyphosate [N-(phosphonomethyl)glycine] and to screen the plant kingdom for high levels of this valuable phytochemical precursor to the pharmaceutical oseltamivir. A simple, rapid, and efficient method using microwave-assisted extraction (MWAE) with water as the extraction solvent was developed for the determination of shikimic acid in plant tissues. High performance liquid chromatography was used for the separation of shikimic acid, and chromatographic data were acquired using photodiode array detection. This MWAE technique was successful in recovering shikimic acid from a series of fortified plant tissues at more than 90% efficiency with an interference-free chromatogram. This allowed the use of lower amounts of reagents and organic solvents, reducing the use of toxic and/or hazardous chemicals, as compared to currently used methodologies. The method was used to determine the level of endogenous shikimic acid in several species of Brachiaria and sugarcane (Saccharum officinarum) and on B. decumbens and soybean (Glycine max) after treatment with glyphosate. The method was sensitive, rapid and reliable in all cases.
Resumo:
Fungal diseases are important factors limiting common bean yield. White mold is one of the main diseases caused by soil pathogens. The objective of this study was to quantify the distribution of a fungicide solution sprayed into the canopy of bean plants by spectrophotometry, using a boom sprayer with and without air assistance. The experiment was arranged in a 2 x 2 x 2 factorial (two types of nozzles, two application rates, and air assistance on and off) randomized block design with four replications. Air assistance influenced the deposition of solution on the bean plant and yield increased significantly with the increased rate of application and air assistance in the boom sprayer.
Resumo:
Differences in levels of lignin in the plant between conventional and transgenic cultivars RR has been reported by several authors, however, there are few studies evaluating the influence of spraying of glyphosate on the lignin in the plant and RR soybean seeds. The aim of this study was to evaluate the physiological quality of RR transgenic soybean seeds and the lignin contents of plants sprayed with the herbicide glyphosate. The assays were conducted both in greenhouse and field in the municipality of Lavras, MG, in the agricultural year 2007/08. The experiment was arranged in a splitplot design with four replicates, considering the treatments hand weeding and herbicide glyphosate as plots, and five RR soybean cultivars (BRS 245 RR, BRS 247 RR, Valiosa RR, Silvânia RR and Baliza RR) as splitplots. In the greenhouse, the cultivars tested were BRS 245 RR and Valiosa RR in a randomized block design with four replicates. The sprayings were carried out at stages V3, V7 and early R5 (3L/ha). The 1000 seed weight, mechanical injury, germination and germination velocity index, emergence velocity index, accelerated aging, electrical conductivity and water soaking seed test, lignin content in the seed coat, in the stem and legumes were determined. The spraying of glyphosate herbicide, in greenhouse and field, did not alter the physiological quality of seeds and the lignin contents in the plant.