59 resultados para Tongue biofilm
em Scielo Saúde Pública - SP
Resumo:
This present work aimed to assess the effect of different concentrations of cassava starch, associated or not with prochloraz fungicide, on the postharvest conservation of 'Pedro Sato' guavas. Physiologically mature fruits were immersed in a solution of prochloraz (49.5 g/100 liters of water) for 5 min. Fruit treated with distilled water and air dried were used as control. They were immersed in cassava starch suspension at concentrations of 0, 20, 30 and 40 g/L, plus 0.5 mL/L of mineral oil. The fruits were stored at 21.0 ± 1.0 ºC and relative humidity of 85 ± 5%, for 12 days, and were examined at every three days. The combination of prochloraz and cassava starch resulted in delayed loss of firmness and yellowness and inhibited the incidence of lesions caused by Colletotrichum gloeosporioides during the 12 days of storage. Fruits treated with 40 g/L of starch, whether containing prochloraz or not, had unpleasant taste and odor, which suggests the occurrence of fermentation. Control fruits, with and without prochloraz, and those treated with starch with no prochloraz, had nearly 100% lesion occurrence within the 12 days. Starch suspension of 30 g/L, containing prochloraz, was the most effective in maintaining fruit quality.
Resumo:
Platelet Concentrates (PCs) are the blood components with the highest rate of bacterial contamination, and coagulase-negative staphylococci (CoNS) are the most frequently isolated contaminants. This study investigated the biofilm formation of 16 contaminated units out of 691 PCs tested by phenotypic and genotypic methods. Adhesion in Borosilicate Tube (ABT) and Congo Red Agar (CRA) tests were used to assess the presence of biofilm. The presence of icaADC genes was assessed by means of the Polymerase Chain Reaction (PCR) technique. With Vitek(r)2, Staphylococcus haemolyticus was considered the most prevalent CoNS (31.25%). The CRA characterized 43.8% as probable biofilm producers, and for the ABT test, 37.5%. The icaADC genes were identified in seven samples by the PCR. The ABT technique showed 85.7% sensitivity and 100% specificity when compared to the reference method (PCR), and presented strong agreement (k = 0.8). This study shows that species identified as PCs contaminants are considered inhabitants of the normal skin flora and they might become important pathogens. The results also lead to the recommendation of ABT use in laboratory routine for detecting biofilm in CoNS contaminants of PCs.
Resumo:
Vibrio cholerae represents a significant threat to human health in developing countries. This pathogen forms biofilms which favors its attachment to surfaces and its survival and transmission by water or food. This work evaluated the in vitro biofilm formation of V. cholerae isolated from clinical and environmental sources on stainless steel of the type used in food processing by using the environmental scanning electron microscopy (ESEM). Results showed no cell adhesion at 4 h and scarce surface colonization at 24 h. Biofilms from the environmental strain were observed at 48 h with high cellular aggregations embedded in Vibrio exopolysaccharide (VPS), while less confluence and VPS production with microcolonies of elongated cells were observed in biofilms produced by the clinical strain. At 96 h the biofilms of the environmental strain were released from the surface leaving coccoid cells and residual structures, whereas biofilms of the clinical strain formed highly organized structures such as channels, mushroom-like and pillars. This is the first study that has shown the in vitro ability of V. cholerae to colonize and form biofilms on stainless steel used in food processing.
Resumo:
INTRODUCTION: Antimicrobial activity on biofilms depends on their molecular size, positive charges, permeability coefficient, and bactericidal activity. Vancomycin is the primary choice for methicillin-resistant Staphylococcus aureus (MRSA) infection treatment; rifampicin has interesting antibiofilm properties, but its effectivity remains poorly defined. METHODS: Rifampicin activity alone and in combination with vancomycin against biofilm-forming MRSA was investigated, using a twofold serial broth microtiter method, biofilm challenge, and bacterial count recovery. RESULTS: Minimal inhibitory concentration (MIC) and minimal bactericidal concentration for vancomycin and rifampicin ranged from 0.5 to 1mg/l and 0.008 to 4mg/l, and from 1 to 4mg/l and 0.06 to 32mg/l, respectively. Mature biofilms were submitted to rifampicin and vancomycin exposure, and minimum biofilm eradication concentration ranged from 64 to 32,000 folds and from 32 to 512 folds higher than those for planktonic cells, respectively. Vancomycin (15mg/l) in combination with rifampicin at 6 dilutions higher each isolate MIC did not reach in vitro biofilm eradication but showed biofilm inhibitory capacity (1.43 and 0.56log10 CFU/ml reduction for weak and strong biofilm producers, respectively; p<0.05). CONCLUSIONS: In our setting, rifampicin alone failed to effectively kill biofilm-forming MRSA, demonstrating stronger inability to eradicate mature biofilm compared with vancomycin.
Resumo:
AbstractINTRODUCTION:Chamomile ( Chamaemelum nobile ) is widely used throughout the world, and has anti-inflammatory, deodorant, bacteriostatic, antimicrobial, carminative, sedative, antiseptic, anti-catarrhal, and spasmolytic properties. Because of the increasing incidence of drug-resistant bacteria, the development of natural antibacterial sources such as medical herbs for the treatment of infectious diseases is necessary. Extracts from different plant parts such as the leaves, flowers, fruit, and bark of Combretum albiflorum, Laurus nobilis , and Sonchus oleraceus were found to possess anti-quorum sensing (QS) activities. In this study, we evaluated the effect of C. nobile against Pseudomonas aeruginosa biofilm formationMETHODS:The P. aeruginosa samples were isolated from patients with different types of infection, including wound infection, septicemia, and urinary tract infection. The flowers of C. nobile were dried and the extract was removed using a rotary device and then dissolved in dimethyl sulfoxide at pH 7.4. The microdilution method was used to evaluate the minimum inhibitory concentration (MIC) of this extract on P. aeruginosa , and biofilm inhibition was assayed.RESULTS:Eighty percent of the isolated samples (16/20) could form a biofilm, and most of these were isolated from wound infections. The biofilm inhibitory concentration of the C. nobile extract was 6.25-25mg/ml, whereas the MIC was 12.5-50mg/ml.CONCLUSIONS:The anti-QS property of C. nobile may play an important role in its antibacterial activity, thus offering an additional strategy in the fight against bacterial infections. However, molecular investigation is required to explore the exact mechanisms of the antibacterial action and functions of this phytocompound.
Resumo:
Descriptive and comparative studies on tongue of nineteen Molossidae, one Mystacinidae, and four Vespertilionidae bats species were carried out. Analysis was restricted to the external morphology, covering general shape of the tongue and its papillae. Types of papillae and their distribution presented considerable intergeneric variation, considering the strictly insectivorous feeding habits of these bats. Distribution of the data of tongue morphology is analyzed and compared with the phylogenetic schemes proposed previously and comments about evolutionary relationships among taxa were done.
Resumo:
The Epstein-Barr virus (EBV) is the etiological agent of oral hairy leukoplakia (OHL), an oral lesion with important diagnostic and prognostic value in acquired immunodeficiency disease syndrome. The two EBV genotypes, EBV-1 and EBV-2, can be distinguished by divergent gene sequences encoding the EBNA-2, 3A, 3B, and 3C proteins. The purpose of this study was to identify the EBV genotype prevalent in 53 samples of scrapings from the lateral border of the tongue of HIV-1 seropositive patients, with and without OHL, and to correlate the genotypes with presence of clinical or subclinical OHL with the clinic data collected. EBV-1 and EBV-2 were identified through PCR and Nested-PCR based on sequence differences of the EBNA-2 gene. EBV-1 was identified in the 31 samples (15 without OHL, 7 with clinical OHL and 9 with subclinical OHL), EBV-2 in 12 samples (10 without OHL, 1 with clinical and 1 subclinical OHL), and a mixed infection in 10 samples (2 without OHL, 3 with clinical and 5 with subclinical OHL). The presence of EBV-1 was higher in women, but a significant statistical result relating one the EBV genotypes to the development of OHL was not found. We conclude that the oral epithelium in HIV-1 seropositive patients can be infected by EBV-1, EBV-2 or by a mixed viral population.
Resumo:
Candida parapsilosis, currently divided into three distinct species, proliferates in glucose-rich solutions and has been associated with infections resulting from the use of medical devices made of plastic, an environment common in dialysis centres. The aims of this study were (i) to screen for Candida orthopsilosis and Candida metapsilosis (100 environmental isolates previously identified as C. parapsilosis), (ii) to test the ability of these isolates to form biofilm and (iii) to investigate the in vitro susceptibility of Candida spp biofilms to the antifungal agents, fluconazole (FLC) and amphotericin B (AMB). Isolates were obtained from a hydraulic circuit collected from a haemodialysis unit. Based on molecular criteria, 47 strains were re-identified as C. orthopsilosis and 53 as C. parapsilosis. Analyses using a formazan salt reduction assay and total viable count, together with microscopy studies, revealed that 72 strains were able to form biofilm that was structurally similar, but with minor differences in morphology. A microtitre-based colorimetric assay used to test the susceptibility of fungal biofilms to AMB and FLC demonstrated that the C. parapsilosis complex displayed an increased resistance to these antifungal agents. The results from these analyses may provide a basis for implementing quality controls and monitoring to ensure the microbiological purity of dialysis water, including the presence of yeast.
Resumo:
We analysed the antimicrobial susceptibility, biofilm formation and genotypic profiles of 27 isolates of Staphylococcus haemolyticus obtained from the blood of 19 patients admitted to a hospital in Rio de Janeiro, Brazil. Our analysis revealed a clinical significance of 36.8% and a multi-resistance rate of 92.6% among these isolates. All but one isolate carried the mecA gene. The staphylococcal cassette chromosome mec type I was the most prevalent mec element detected (67%). Nevertheless, the isolates showed clonal diversity based on pulsed-field gel electrophoresis analysis. The ability to form biofilms was detected in 66% of the isolates studied. Surprisingly, no icaAD genes were found among the biofilm-producing isolates.
Resumo:
This study aimed to correlate the presence of ica genes, biofilm formation and antimicrobial resistance in 107 strains of Staphylococcus epidermidis isolated from blood cultures. The isolates were analysed to determine their methicillin resistance, staphylococcal cassette chromosome mec (SCCmec) type, ica genes and biofilm formation and the vancomycin minimum inhibitory concentration (MIC) was measured for isolates and subpopulations growing on vancomycin screen agar. The mecA gene was detected in 81.3% of the S. epidermidis isolated and 48.2% carried SCCmec type III. The complete icaADBC operon was observed in 38.3% of the isolates; of these, 58.5% produced a biofilm. Furthermore, 47.7% of the isolates grew on vancomycin screen agar, with an increase in the MIC in 75.9% of the isolates. Determination of the MIC of subpopulations revealed that 64.7% had an MIC ≥ 4 μg mL-1, including 15.7% with an MIC of 8 μg mL-1 and 2% with an MIC of 16 μg mL-1. The presence of the icaADBC operon, biofilm production and reduced susceptibility to vancomycin were associated with methicillin resistance. This study reveals a high level of methicillin resistance, biofilm formation and reduced susceptibility to vancomycin in subpopulations of S. epidermidis. These findings may explain the selection of multidrug-resistant isolates in hospital settings and the consequent failure of antimicrobial treatment.
Resumo:
Corynebacterium striatum is a potentially pathogenic microorganism that causes nosocomial outbreaks. However, little is known about its virulence factors that may contribute to healthcare-associated infections (HAIs). We investigated the biofilm production on abiotic surfaces of multidrug-resistant (MDR) and multidrug-susceptible (MDS) strains of C. striatum of pulsed-field gel electrophoresis types I-MDR, II-MDR, III-MDS and IV-MDS isolated during a nosocomial outbreak in Rio de Janeiro, Brazil. The results showed that C. striatum was able to adhere to hydrophilic and hydrophobic abiotic surfaces. The C. striatum1987/I-MDR strain, predominantly isolated from patients undergoing endotracheal intubation procedures, showed the greatest ability to adhere to all surfaces. C. striatumbound fibrinogen to its surface, which contributed to biofilm formation. Scanning electron microscopy showed the production of mature biofilms on polyurethane catheters by all pulsotypes. In conclusion, biofilm production may contribute to the establishment of HAIs caused by C. striatum.
Resumo:
Klebsiella pneumoniae U25 is a multidrug resistant strain isolated from a tertiary care hospital in Chennai, India. Here, we report the complete annotated genome sequence of strain U25 obtained using PacBio RSII. This is the first report of the whole genome of K. pneumoniaespecies from Chennai. It consists of a single circular chromosome of size 5,491,870-bp and two plasmids of size 211,813 and 172,619-bp. The genes associated with multidrug resistance were identified. The chromosome of U25 was found to have eight antibiotic resistant genes [blaOXA-1,blaSHV-28, aac(6’)1b-cr,catB3, oqxAB, dfrA1]. The plasmid pMGRU25-001 was found to have only one resistant gene (catA1) while plasmid pMGRU25-002 had 20 resistant genes [strAB, aadA1,aac(6’)-Ib, aac(3)-IId,sul1,2, blaTEM-1A,1B,blaOXA-9, blaCTX-M-15,blaSHV-11, cmlA1, erm(B),mph(A)]. A mutation in the porin OmpK36 was identified which is likely to be associated with the intermediate resistance to carbapenems in the absence of carbapenemase genes. U25 is one of the few K. pneumoniaestrains to harbour clustered regularly interspaced short palindromic repeats (CRISPR) systems. Two CRISPR arrays corresponding to Cas3 family helicase were identified in the genome. When compared to K. pneumoniaeNTUHK2044, a transposase gene InsH of IS5-13 was found inserted.
Resumo:
The objective of this work was to compare the effects of four different concentrations of cassava starch film and storage temperature on shelf life and the quality of a genotype of acerola from the Germplasm Active Bank (GAB) of Federal Rural University of Pernambuco, Brazil. Sound orange-reddish acerola fruits were washed with a chlorine solution (100 mg.L-1 active chlorine) and randomly distributed into different lots. The fruits were dipped for 3 min in a cassava starch suspension with concentrations of 1, 2, 3 and 4% (w/v) and the control without coating, stored at 10ºC (85% RH) and 22ºC (85% RH). The total soluble solids (TSS), pH, titratable acidity (TA) and ascorbic acid (AA) were determined at harvest and regular interval during storage. The use of cassava biofilm at 1% on acerola fruits maintained the highest ascorbic acid content and the temperature of 10ºC extended storage life. The fruits coated with 1 and 2% biofilm could be stored for a period up to 15 days at 10ºC, with acceptable quality characteristics.
Resumo:
The development of organic devices based on conducting polymers for biofilm detection requires the combination of superior electrical response and high surface area for biofilm incorporation. Polypyrrole is a potential candidate for application in biofilm detection and control due to its characteristic superior electrical response and strong interaction with bacteria, which enables the use of the bioelectric effect in resulting devices. In this study, chemically synthesized polypyrrole was applied as a support for biofilm growth of S. aureus. Modifications in the electrical response of the polymeric template were explored to identify general mechanisms established during the deposition of the biofilm.