8 resultados para Titanium metallurgy
em Scielo Saúde Pública - SP
Resumo:
We analyzed 37 patients who underwent segmental wide resection of bone tumors and reconstruction with a modular titanium endoprosthesis at the Orthopaedic Oncology Group, between 1992 and 1998. Twelve patients were male and 25 were female, with a mean age of 30 years (9 - 81). The mean follow-up was 14 months (2 - 48). The diagnoses were: osteosarcoma (14 cases), metastatic carcinoma (10), Ewing's sarcoma (4), giant cell tumor (4), malignant fibrous histiocytoma (3), chondrosarcoma (1), and aneurysmal bone cyst (1). Eleven articulated total knee, 8 partial proximal femur with bipolar acetabulum, 8 partial proximal humerus, 3 total femur, 2 partial proximal tibia, 2 diaphyseal femur, 2 diaphyseal humerus, and 1 total proximal femur with cementless acetabulum endoprosthesis implant procedures were done. The complications related to the procedure included: infection (5 cases), dislocation (3), module loosening (1), and ulnar nerve paresthesia (1). We used the following criteria for the clinical evaluation: presence of pain, range of motion, reconstruction stability, surgical and oncologic complications, and patient acceptance. The results were good in 56.8% of the cases, regular in 32.4% and poor in 10.8%.
Resumo:
The aim of this report is to describe the anatomic-pathologic findings from necropsies of 5 drug addicts with titanium pigment in several organs after chronic intravenous injection of crushed propoxyphene hydrochloride tablets. Samples from liver, spleen, lungs, lymph nodes, and bone marrow were obtained, and after being grossly studied, they were submitted to evaluation using common light and polarized microscopy. In all 5 cases, a pigment with characteristics of titanium dioxide was found within tissue samples of the organs studied. Our findings suggest that research concerning titanium pigment within body tissues should be enhanced, considering the potential contribution of this morphologic data to forensic pathology.
Resumo:
The Cerium (IV) and Titanium (IV) oxides mixture (CeO2-3TiO2) was prepared by thermal treatment of the oxochloroisopropoxide of Cerium (IV) and Titanium (IV). The chemical route utilizing the Cerium (III) chloride alcoholic complex and Titanium (IV) isopropoxide is presented. The compound Ce5Ti15Cl16O30 (iOPr)4(OH-Et)15 was characterized by elemental analysis, FTIR and TG/DTG. The X-ray diffraction patterns of the oxides resulting from the thermal decomposition of the precursor at 1000 °C for 36 h indicated the formation of cubic cerianite (a = 5.417Å) and tetragonal rutile (a = 4.592Å) and (c = 2.962 Å), with apparent crystallite sizes around 38 and 55nm, respectively.
Resumo:
Titanium is an attractive material for structural and biomedical applications because of its excellent corrosion resistance, biocompatibility and high strength-to-weight ratio. The high reactivity of titanium in the liquid phase makes it difficult to produce it by fusion. Powder metallurgy has been shown to be an adequate technique to obtain titanium samples at low temperatures and solid-phase consolidation. The production of compacts with different porosities obtained by uniaxial pressing and vacuum sintering is briefly reviewed. Powder particle size control has been shown to be very important for porosity control. Sample characterization was made using scanning electron microscopy (SEM) images.
Resumo:
The stereoselective addition of the titanium (IV) enolates derived from (S)-4-isopropyl-N-4-chlorobutyryl-1,3-thiazolidine-2-thione (8) and from (S)-4-isopropyl-N-4-chloropentanoyl-1,3-thiazolidine-2-thione (9) to N-Boc-2-methoxypyrrolidine (5b) afforded the addition products (+)-10 and (+)-11 in 84% yield in both cases, as 8.6:1 and 10:1 diastereoisomeric mixtures, respectively. A three-step sequence allowed to convert these adducts to (+)-isoretronecanol (1) and (+)-5-epi-tashiromine (2) in 43% and 49% overall yield, respectively.
Resumo:
The corrosion resistance of the new Ti-6Al-4V-1Zr alloy in comparison with ternary Ti-6Al-4V alloy in Ringer-Brown solution and artificial Carter-Brugirard saliva of different pH values was studied. In Ringer-Brown solution, the new alloy presented an improvement of all electrochemical parameters due to the alloying with Zr; also, impedance spectra revealed better protective properties of its passive layer. In Carter-Brugirard artificial saliva, an increase of the passive film thickness was proved. Fluoride ions had a slight negative influence on the corrosion and ion release rates, without to affect the very good stability of the new Ti-6Al-4V-1Zr alloy.
Resumo:
Pure and Fe(III)-doped TiO2 suspensions were prepared by the sol gel method with the use of titanium isopropoxide (Ti(OPri)4) as precursor material. The properties of doped materials were compared to TiO2 properties based on the characterization by thermal analysis (TG-DTA and DSC), X-ray powder diffractometry and spectroscopy measurements (FTIR). Both undoped and doped TiO2 suspensions were used to coat metallic substrate as a mean to make thin-film electrodes. Thermal treatment of the precursors at 400ºC for 2 h in air resulted in the formation of nanocrystalline anatase TiO2. The thin-film electrodes were tested with respect to their photocatalytic performance for degradation of a textile dye in aqueous solution. The plain TiO2 remains as the best catalyst at the conditions used in this report.
Resumo:
A previous study showed that BMP-2 (bone morphogenetic protein-2) and wear debris can separately support osteoclast formation induced by the receptor activator of NF-κB ligand (RANKL). However, the effect of BMP-2 on wear debris-induced osteoclast formation is unclear. In this study, we show that neither titanium particles nor BMP-2 can induce osteoclast formation in RAW 264.7 mouse leukemic monocyte macrophage cells but that BMP-2 synergizes with titanium particles to enhance osteoclast formation in the presence of RANKL, and that at a low concentration, BMP-2 has an optimal effect to stimulate the size and number of multinuclear osteoclasts, expression of osteoclast genes, and resorption area. Our data also clarify that the effects caused by the increase in BMP-2 on phosphorylated SMAD levels such as c-Fos expression increased throughout the early stages of osteoclastogenesis. BMP-2 and titanium particles stimulate the expression of p-JNK, p-P38, p-IkB, and P50 compared with the titanium group. These data suggested that BMP-2 may be a crucial factor in titanium particle-mediated osteoclast formation.