3 resultados para Time-sharing computer systems

em Scielo Saúde Pública - SP


Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT OBJECTIVE To estimate the required number of public beds for adults in intensive care units in the state of Rio de Janeiro to meet the existing demand and compare results with recommendations by the Brazilian Ministry of Health. METHODS The study uses a hybrid model combining time series and queuing theory to predict the demand and estimate the number of required beds. Four patient flow scenarios were considered according to bed requests, percentage of abandonments and average length of stay in intensive care unit beds. The results were plotted against Ministry of Health parameters. Data were obtained from the State Regulation Center from 2010 to 2011. RESULTS There were 33,101 medical requests for 268 regulated intensive care unit beds in Rio de Janeiro. With an average length of stay in regulated ICUs of 11.3 days, there would be a need for 595 active beds to ensure system stability and 628 beds to ensure a maximum waiting time of six hours. Deducting current abandonment rates due to clinical improvement (25.8%), these figures fall to 441 and 417. With an average length of stay of 6.5 days, the number of required beds would be 342 and 366, respectively; deducting abandonment rates, 254 and 275. The Brazilian Ministry of Health establishes a parameter of 118 to 353 beds. Although the number of regulated beds is within the recommended range, an increase in beds of 122.0% is required to guarantee system stability and of 134.0% for a maximum waiting time of six hours. CONCLUSIONS Adequate bed estimation must consider reasons for limited timely access and patient flow management in a scenario that associates prioritization of requests with the lowest average length of stay.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study aimed at evaluating the use of Artificial Neural Network to correlate the values resulting from chemical analyses of samples of coffee with the values of their sensory analyses. The coffee samples used were from the Coffea arabica L., cultivars Acaiá do Cerrado, Topázio, Acaiá 474-19 and Bourbon, collected in the southern region of the state of Minas Gerais. The chemical analyses were carried out for reducing and non-reducing sugars. The quality of the beverage was evaluated by sensory analysis. The Artificial Neural Network method used values from chemical analyses as input variables and values from sensory analysis as output values. The multiple linear regression of sensory analysis values, according to the values from chemical analyses, presented a determination coefficient of 0.3106, while the Artificial Neural Network achieved a level of 80.00% of success in the classification of values from the sensory analysis.