33 resultados para Thermogravimetric Analysis (TGA)
em Scielo Saúde Pública - SP
Resumo:
Knowledge of coal combustion kinetics is crucial for burner design. This work aims to contribute on this issue by determining the kinetics of a particular Brazilian bituminous coal. Non-isothermal thermogravimetry was applied for determining both the pre-exponential factor and the activation energy. Coal samples of 10 mg and 775 mm mean size were used in synthetic air atmospheres (21 % O2). Heating rates from 10 to 50 ºC/min were applied until the temperature reached 850 ºC, which was kept constant until burnout. The activation energy for the primary and the secondary combustion resulted, respectively, in 135.1 kJ/mol and 85.1 kJ/mol.
Resumo:
Biodegradable polymer blends were obtained using collagen and chitosan. Membranes of collagen and chitosan in different proportions (3:1, 1:1 and 1:3) were prepared by mixing their acetate solutions (pH 3.5) at room temperature. The blends were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier Transform infrared (FTIR) spectroscopy, specific viscosity, water absorption and stress-strain assays. The results showed that chitosan did not interfere in the structural arrangement of the collagen triple helix and the properties of the blends can be controlled by varing the proportion of the collagen and the chitosan.
Resumo:
The present work investigated the effect of coprecipitation-oxidant synthesis on the specific surface area of perovskite-type oxides LaBO3 (B= Mn, Ni, Fe) for total oxidation of ethanol. The perovskite-type oxides were characterized by X-ray diffraction, nitrogen adsorption (BET method), thermogravimetric analysis (TGA-DTA), TPR and X-ray photoelectron spectroscopy (XPS). Through method involving the coprecipitation-oxidant was possible to obtain catalysts with different BET specific surface areas, of 33-51 m²/g. The results of the catalytic test confirmed that all oxides investigated in this work have specific catalytic activity for total oxidation of ethanol, though the temperatures for total conversion change for each transition metal.
Resumo:
Characterization of the thermal decomposition of polyurethane (PUR) foams was performed by Fourier-transformed infrared (FT-IR) spectroscopy and thermogravimetric analysis (TGA). Three main weight loss paths were observed by TGA, the residue being lower than 3 wt.% for 3 different PUR foams analyzed. FT-IR spectra indicated CO2, CO, NH3 and isocyanides as main decomposition products. PUR foams of different cell sizes were immersed in a slurry of the parent glass ceramic of composition Li2O-ZrO2-SiO2-Al 2O3 (LZSA) and submitted to heat treatment. The LZSA cellular glass ceramics obtained after sintering and crystallization resembled the original morphology of the PUR foams.
Resumo:
The preparation of oat-reinforced polypropylene nanocomposites with different fiber contents by means of melt-processing was investigated. Composite properties were evaluated by Scanning Electron Microscopy (SEM), Flexural Modulus, Dynamic Mechanical Analysis (DMA), Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). Findings confirmed that the oat composite properties were affected by fiber type and content. Improvements in mechanical properties were obtained using fiber contents < 20% w.t.
Resumo:
Titanium dioxide porous thin films on the Anatase phase were deposited onto glass slides by the sol-gel method assisted with polyethylene glycol (PEG). The dip-coated films were characterized using scanning electron microscopy (SEM), thermogravimetric analysis (TGA and DTG), UV-visible spectroscopy and X-ray diffraction (XRD). The photocatalytic activity of the films was determined by means of methyl-orange oxidation tests. The resultant PEG-modified films were crack-free and developed a porous structure after calcination at 500 °C. Photo-oxidation tests showed the dependency of catalytic activity of the films on the number of layers (thickness) and porosity, i.e. of the interfacial area.
Resumo:
Biodegradable polyurethanes (PUR) were prepared from polyols derived from castor oil by transesterification of pentaerythritol-modified castor oil and lysine polyisocyanates (LDI and LTI). The polyurethanes obtained were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis (TGA), and dynamic mechanical thermal analysis (DMTA). The mechanical behavior of the polyurethanes was measured by Shore A hardness and tensile testing (stress-strain curves). The biodegradable nature of the material was determined by contact angle, water absorption tests, and in vitro degradation in PBS solution. This study aims to examine the effect of the structure and functionality of diisocyanate on the mechanical properties and in vitro degradation of the material. The results were compared with homologous materials obtained from isophorone diisocyanate (IPDI) used in previous works. The objective was to evaluate candidate materials that can be potentially used in tissue engineering.
Resumo:
The thermal decomposition behavior of the Fe(II), Co(II), Ni(II) and Zn(II) complexes of polydithiooxamide has been investigated by thermogravimetric analysis (TGA) at a heating rate of 20°C min-1 under nitrogen. The Coats-Redfern integral method is used to evaluate the kinetic parameters for the successive steps in the decomposition sequence observed in the TGA curves. The processes of thermal decomposition taking place in the four complexes are studied comparatively as the TGA curves indicate the difference in the thermal decomposition behavior of these complexes. The thermal stabilities of these complexes are discussed in terms of repulsion among electron pairs in the valence shell of the central ion and electronegativity effects.
Resumo:
ABSTRACT The climate change, the quest for sustainability and the strong environmental pressures for alternatives to traditional fossil fuels have increased the interest in the search and use of renewable energy sources. Among them stands out the biomass of charcoal coming from renewable forests, widely used as a thermal reductant in the steel industry in the detriment of the use of mineral coal coke. This study aimed to compare different operating procedures of immediate chemical analysis of charcoal. Seven essays to immediate chemical analysis were compared, spread between procedures performed by Brazilian companies and laboratories, the test described by NBR 8112 and one realized with a thermogravimetric analyzer (TGA) using the parameters of the NBR 8112. There were significant differences in the volatiles matter content and consequently in the fixed carbon contents found. The differences between the procedures and the NBR 8112 were caused by an excess burning time, a mass sample above or below the standard or inappropriate container used for burning. It observed that the TGA appraisal of the volatiles content must be carried out with a burning time equal to 2 minutes to obtain results similar to those of the NBR 8112 norm. Moreover, the ash content values were statistically identical and the particles size did not influence the differences between means.
Resumo:
Simultaneous oxidation/co-precipitation of an equimolar mixture of La(III) and Co(II) nitrates and La(III) nitrate and Mn(II) chloride afforded a hydroxide gel, which was converted to LaCoO3 and LaMnO3 on calcination at 600 °C. After calcination, the obtained perovskites have been characterised by X-ray diffraction (XRD), X- ray photoelectron spectroscopy (XPS), thermogravimetric analysis (DTA - TGA) and BET specific surface determination. Specific surface areas of perovskites were 12 - 60 m²/g. XRD analysis showed that LaCoO3 and LaMnO3 are simple phase perovskite - type oxides. Traces of LaOCl, in addition to the perovskite were detected in the LaMnO3. The catalytic behavior was examined in the propane and CO oxidation. The LaCoO3 catalyst was more active to CO2 than the LaMnO3 catalyst.
Resumo:
In this work, the structural, mechanical, diffractometric, and thermal parameters of chitosan-hydroxypropylmethylcellulose (HPMC) films plasticized with sorbitol were studied. Solutions of HPMC (2% w/v) in water and chitosan (2% w/v) in 2% acetic acid solution were prepared. The concentration of sorbitol used was 10% (w/w) to both polymers. This solutions were mixed at different proportions (100/0; 70/30; 50/50; 30/70, and 0/100) of chitosan and HPMC, respectively, and 20 mL was cast in Petri dishes for further analysis of dried films. The miscibility of polymers was assessed by X-ray diffraction, scanning electronic microscopy (SEM), differential scanning calorimetry (DSC), and thermal gravimetric analysis (TGA). The results obtained indicate that the films are not fully miscible at a dry state despite the weak hydrogen bonding between the polymer functional groups.
Resumo:
Alumina supported niobium oxide was prepared by chemical vapor deposition (CVD) of NbCl5. The alumina was calcined and pretreated at differents temperatures in order to vary the density of OH groups on the surface which was determined by thermogravimetric analysis. A good correlation was found between the amount of anchored niobium and the total number of anionic sites (oxide and hydroxyl groups) on the surface of the alumina. The infrared spectra on the OH stretching region indicate that OH groups coordinated to at least one tetrahedral aluminum were more reactive towards NbCl5.
Resumo:
Complexation between acyclovir (ACV), an antiviral drug used for the treatment of herpes simplex virus infection, and beta-cyclodextrin (beta-CD) was studied in solution and in solid states. Complexation in solution was evaluated using solubility studies and nuclear magnetic resonance spectroscopy (¹H-NMR). In the solid state, X-ray diffraction, differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA) and dissolution studies were used. Solubility studies suggested the existence of a 1:1 complex between ACV and beta-CD. ¹H-NMR spectroscopy studies showed that the complex formed occurs with a stoichiometry ratio of 1:1. Powder X-ray diffraction indicated that ACV exists in a semicrystalline state in the complexed form with beta-CD. DSC studies showed the existence of a complex of ACV with beta-CD. The TGA studies confirmed the DSC results of the complex. Solubility of ACV in solid complexes was studied by the dissolution method and it was found to be much more soluble than the uncomplexed drug.
Resumo:
Tetrahydroborate complexes of copper (I) with bidentate phosphines, [Cu(eta²-BH4)(dppm)] (1), [Cu(eta²-BH4)(dppe)] (2), [Cu(eta²-BH4)(cis-dppet)] (3) and [Cu(eta²-BH4)(dppb)] (4) (dppm = bis(diphenylphosphino)methane; dppe = 1,2-bis(diphenylphosphino) ethane; cis-dppet = 1,2-cis(diphenylphosphino)ethene; dppb = 1,4-bis(diphenylphosphino)butane) were prepared and characterized by elemental analysis, infrared spectroscopy, NMR and thermogravimetric analysis. The IR data for 1-4 showed bands typical of a bidentate coordination of BH4 group to the copper atom and the 31P{¹H} NMR spectra indicated that the phosphorous atoms are chelating the metal centre. The thermal behavior of the compounds was investigated and suggested that their thermal stability is influenced by the phosphines. Their thermal stability decreased as follows: [Cu(eta²-BH4)(dppe)] (2) > [Cu(eta²-BH4)(dppm)] (1) > [Cu(eta²-BH4)(dppb)] (4) > [Cu(eta²-BH4)(cis-dppet)] (3). According to thermal analysis and X-ray diffraction patterns all compounds decomposed giving Cu(BO2)2, CuO, CuO2 and Cu as final products.
Resumo:
The layered precursor of MCM-22 was prepared with different Si/Al ratios: 15, 25, 50, 100 and ¥. Upon heat treatment these precursors form MCM-22 zeolite. Both layered precursor and MCM-22 zeolite were characterized by several techniques: Chemical Analysis by Atomic Absorption Spectroscopy (AAS), X-Ray Diffraction (XRD), Thermo-gravimetric Analysis (TGA), Pore Analysis by N2 and Ar adsorption, Scanning Electron Microscopy (SEM), Infrared Spectroscopy (IR) and Temperature Programmed Desorption of ammonium (TPD).