31 resultados para Test in vitro du micronoyau
em Scielo Saúde Pública - SP
Resumo:
The schizont maturation assay for in vitro drug sensitivity tests has been a standard method employed in the global baseline assessment and monitoring of drug response in Plasmodium falciparum. This test is limited in its application to synchronous plasmodial infections because it evaluates the effect of drug on the maturation of parasite especially from ring to schizont stage and therefore synchronized P. falciparum cultures are required. On the other hand, P. knowlesi, a simian malaria parasite has a unique 24-h periodicity and maintains high natural synchronicity in monkeys. The present report presents the results of a comparative study on the course of in vitro maturation of sorbitol synchronized P. falciparum and naturally synchronous P. knowlesi. Ring stage parasites were incubated in RPMI medium supplemented with 10-15% pooled homologous serum in flat-bottomed 96-well micro plates using a candle jar at 37°C. The results suggest that the ideal time for harvesting the micro-assay plates for in vitro drug sensitivity test for sorbitol-synchronized P. falciparum and naturally synchronous P. knowlesi are from 26 to 30 h and from 22 to 25 h, respectively. The advantages of using P. knowlesi in chemotherapeutic studies are discussed.
Resumo:
An experimental model of murine chromoblastomycosis and in vitro tests with Fonsecaea pedrosoi were used to test the sensitivity of this fungus to three different antimycotics. The experimental model was standardized in BALB/c mice inoculated intraperitoneally with a 10(6) CFU/ml suspension of a F. pedrosoi isolate. Clinical infection was evident after 5 days of inoculation. Three groups of 27 mice each were used in the experiment. One group was treated with ketoconazole (KTZ), another with itraconazole (ITZ) and the other with saperconazole (SPZ). Antimycotic therapy was continued for 21 days. The control group consisted of 40 mice which were inoculated, but not treated. Infection was documented by macroscopic and microscopic examination of affected tissue in addition to culture of tissue macerates. Minimal inhibitory concentrations (MIC) and minimal fungicidal concentrations (MFC) for the F. pedrosoi strain used were done. The in vitro results showed that SPZ was the most active with MIC 0.01 mg/ml and MFC 0.1 mg/ml, followed by ITZ. SPZ was also the most effective in vivo since 63% of the treated animals (p=0.01) showed a curative effect after the observation period. We concluded that SPZ had the best in vitro and in vivo activity against F. pedrosoi.
Resumo:
At present, most Neisseria gonorrhoeae testing is done with ß-lactamase and agar dilution tests with common therapeutic agents. Generally, in bacteriological diagnosis laboratories in Argentina, study of antibiotic susceptibility of N.gonorrhoeae is based on ß-lactamase determination and agar dilution method with common therapeutic agents. The National Committee for Clinical Laboratory Standards (NCCLS) has recently described a disk diffusion test that produces results comparable to the reference agar dilution method for antibiotic susceptibility of N.gonorrhoeae, using a dispersion diagram for analyzing the correlation between both techniques. We obtained 57 gonococcal isolates from patients attending a clinic for sexually transmitted diseases in Tucumán, Argentina. Antibiotic susceptibility tests using agar dilution and disk diffusion techniques were compared. The established NCCLS interpretive criteria for both susceptibility methods appeared to be applicable to domestic gonococcal strains. The correlation between the MIC's and the zones of inhibition was studied for penicillin, ampicillin, cefoxitin, spectinomycin, cefotaxime, cephaloridine, cephalexin, tetracycline, norfloxacin and kanamycin. Dispersion diagrams showed a high correlation between both methods.
Resumo:
To evaluate the sensitivity of polymerase chain reaction (PCR) to reveal known number of trypomastigote in the blood of mice, three separate experiments were done. First: To eight samples of 500mul of normal mice blood, one aliquot of 1, 2, 3, 4, 5, 10, and 50 trypomastigotes respectively, were added. Second and third: 10 aliquots with 1 and 10 with 2 trypomastigotes were added to samples of 500mul of normal mice blood. Positive control: 500mul of blood containing 100,000 trypomastigotes. For kDNA minicircles amplification by PCR the primers:S35 and S36 were used. PCR revealed products of 330 b.p in the positive controls. When only one sample with the aliquots of 1 or 2 trypomastigotes was examined, results were negative; results were positive with aliquots of 3 to 50 trypomastigotes. In the 2nd and 3rd experiments, 9/10 aliquots with one parasite and 9/10 with 2 trypomastigotes were positive revealing a high sensitivity of this reaction. In conclusion, the presence of one single parasite in 500mul of blood, is enough for a positive PCR. This method could be used as a complement to the various parasitological cure tests in treated mice, when low volumes of blood are individually examined.
Resumo:
INTRODUCTION: In this study, we aimed at identifying Candida isolates obtained from blood, urine, tracheal secretion, and nail/skin lesions from cases attended at the Hospital Universitário de Londrina over a 3-year period and at evaluating fluconazole susceptibilities of the isolates. METHODS: Candida isolates were identified by polymerase chain reaction (PCR) using species-specific forward primers. The in vitro fluconazole susceptibility test was performed according to EUCAST-AFST reference procedure. RESULTS: Isolates were obtained from urine (53.4%), blood cultures (19.2%), tracheal secretion (17.8%), and nail/skin lesions (9.6%). When urine samples were considered, prevalence was similar in women (45.5%) and in men (54.5%) and was high in the age group >61 years than that in younger ones. For blood samples, prevalence was high in neonates (35%) and advanced ages (22.5%). For nail and skin samples, prevalence was higher in women (71.4%) than in men (28.6%). Candida albicans was the most frequently isolated in the hospital, but Candida species other than C. albicans accounted for 64% of isolates, including predominantly Candida tropicalis (33.2%) and Candida parapsilosis (19.2%). The trend for non-albicans Candida as the predominant species was noted from all clinical specimens, except from urine samples. All Candida isolates were considered susceptible in vitro to fluconazole with the exception of isolates belonging to the intrinsically less-susceptible species C. glabrata. CONCLUSIONS: Non-albicans Candida species were more frequently isolated in the hospital. Fluconazole resistance was a rare finding in our study.
Resumo:
Ethanolic crude extracts from the roots of Chaptalia nutans, traditionally used in Brazilian folk medicine, were screened against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa by using the disk diffusion test technique. S. aureus with 14 mm inhibition zone was considered susceptible. E. coli and P. aeruginosa without such a zone were considered resistant. As a result of this finding, the ethanolic crude extract was fractionated on silica gel column chromatography into five fractions. The ethyl acetate fraction was active against S. aureus and Bacillus subtilis. Further column chromatography separation of the ethyl acetate fraction afforded 30 fractions, which were assayed against S. aureus. Fractions 16 and 17 showed inhibition zones with S. aureus, indicating the presence of active compounds, and were subjected to purification by repeated preparative thin layer chromatography. The pure compound 7-O-beta-D-glucopyranosyl-nutanocoumarin inhibited B. subtilis and S. aureus at concentrations of 62.5 µg/ml and 125 µg/ml, respectively. The antibacterial property of C. nutans appears to have justified its use for the treatment of wounds, which are contaminated through bacterial infections.
Resumo:
Sixty clinical isolates of Cryptococcus neoformans from AIDS from Goiânia, state of Goiás, Brazil, were characterized according to varieties, serotypes and tested for antifungal susceptibility. To differentiate the two varieties was used L-canavanine-glycine-bromothymol blue medium and to separate the serotypes was used slide agglutination test with Crypto Check Iatron. The Minimal Inhibitory Concentration (MIC) of fluconazole, itraconazole, and amphotericin B were determined by the National Committee for Clinical Laboratory Standards macrodilution method. Our results identified 56 isolates as C. neoformans var. neoformans serotype A and 4 isolates as C. neoformans var. gattii serotype B. MIC values for C. neoformans var. gattii were higher than C. neoformans var. neoformans. We verified that none isolate was resistant to itraconazole and to amphotericin B, but one C. neoformans var. neoformans and three C. neoformans var. gattii isolates were resistant to fluconazole. The presence of C. neoformans var. gattii fluconazole resistant indicates the importance of determining not only the variety of C. neoformans infecting the patients but also measuring the MIC of the isolate in order to properly orient treatment.
Resumo:
Plumbagin is a naturally occurring naphthoquinone isolated from roots of Plumbago scandens. The plant was collected at the Campus of Fundação Oswaldo Cruz, Rio de Janeiro, Brazil. P. scandens is used as a traditional medicine for the treatment of several diseases. The antimicrobial activity of plumbagin was evaluated using the macrodilution method. The compound exhibited relatively specific activity against bacteria and yeast. The minimum inhibitory concentration test showed the growth inhibiton of Staphylococcus aureus at a concentration of 1.56 µg/ml and of Candida albicans at a concentration of 0.78 µg/ml. These results suggest the naphthoquinone plumbagin as a promising antimicrobial agent.
Resumo:
In the present study, an extensive in vitro antimicrobial profiling was performed for three medicinal plants grown in Cuba, namely Simarouba glauca, Melaleuca leucadendron and Artemisia absinthium. Ethanol extracts were tested for their antiprotozoal potential against Trypanosoma b. brucei, Trypanosoma cruzi, Leishmania infantum and Plasmodium falciparum. Antifungal activities were evaluated against Microsporum canis and Candida albicans whereas Escherichia coli and Staphylococcus aureus were used as test organisms for antibacterial activity. Cytotoxicity was assessed against human MRC-5 cells. Only M. leucadendron extract showed selective activity against microorganisms tested. Although S. glauca exhibited strong activity against all protozoa, it must be considered non-specific. The value of integrated evaluation of extracts with particular reference to selectivity is discussed.
Resumo:
Candida parapsilosis, currently divided into three distinct species, proliferates in glucose-rich solutions and has been associated with infections resulting from the use of medical devices made of plastic, an environment common in dialysis centres. The aims of this study were (i) to screen for Candida orthopsilosis and Candida metapsilosis (100 environmental isolates previously identified as C. parapsilosis), (ii) to test the ability of these isolates to form biofilm and (iii) to investigate the in vitro susceptibility of Candida spp biofilms to the antifungal agents, fluconazole (FLC) and amphotericin B (AMB). Isolates were obtained from a hydraulic circuit collected from a haemodialysis unit. Based on molecular criteria, 47 strains were re-identified as C. orthopsilosis and 53 as C. parapsilosis. Analyses using a formazan salt reduction assay and total viable count, together with microscopy studies, revealed that 72 strains were able to form biofilm that was structurally similar, but with minor differences in morphology. A microtitre-based colorimetric assay used to test the susceptibility of fungal biofilms to AMB and FLC demonstrated that the C. parapsilosis complex displayed an increased resistance to these antifungal agents. The results from these analyses may provide a basis for implementing quality controls and monitoring to ensure the microbiological purity of dialysis water, including the presence of yeast.
Resumo:
The glutamate-rich protein (GLURP) is an exoantigen expressed in all stages of the Plasmodium falciparum life cycle in humans. Anti-GLURP antibodies can inhibit parasite growth in the presence of monocytes via antibody-dependent cellular inhibition (ADCI), and a major parasite-inhibitory region has been found in the N-terminal R0 region of the protein. Herein, we describe the antiplasmodial activity of anti-GLURP antibodies present in the sera from individuals naturally exposed to malaria in a Brazilian malaria-endemic area. The anti-R0 antibodies showed a potent inhibitory effect on the growth of P. falciparum in vitro, both in the presence (ADCI) and absence (GI) of monocytes. The inhibitory effect on parasite growth was comparable to the effect of IgGs purified from pooled sera from hyperimmune African individuals. Interestingly, in the ADCI test, higher levels of tumour necrosis factor alpha (TNF-α) were observed in the supernatant from cultures with higher parasitemias. Our data suggest that the antibody response induced by GLURP-R0 in naturally exposed individuals may have an important role in controlling parasitemia because these antibodies are able to inhibit the in vitro growth of P. falciparum with or without the cooperation from monocytes. Our results also indicate that TNF-α may not be relevant for the inhibitory effect on P. falciparum in vitro growth.
Resumo:
The relationship between autoimmunity and malaria is not well understood. To determine whether autoimmune responses have a protective role during malaria, we studied the pattern of reactivity to plasmodial antigens of sera from 93 patients with 14 different autoimmune diseases (AID) who were not previously exposed to malaria. Sera from patients with 13 different AID reacted against Plasmodium falciparum by indirect fluorescent antibody test with frequencies varying from 33-100%. In addition, sera from 37 AID patients were tested for reactivity against Plasmodium yoelii 17XNL and the asexual blood stage forms of three different P. falciparum strains. In general, the frequency of reactive sera was higher against young trophozoites than schizonts (p < 0.05 for 2 strains), indicating that the antigenic determinants targeted by the tested AID sera might be more highly expressed by the former stage. The ability of monoclonal auto-antibodies (auto-Ab) to inhibit P. falciparum growth in vitro was also tested. Thirteen of the 18 monoclonal auto-Ab tested (72%), but none of the control monoclonal antibodies, inhibited parasite growth, in some cases by greater than 40%. We conclude that autoimmune responses mediated by auto-Ab may present anti-plasmodial activity.
Resumo:
Tachia sp. are used as antimalarials in the Amazon Region and in vivo antimalarial activity of a Tachia sp. has been previously reported. Tachia grandiflora Maguire and Weaver is an Amazonian antimalarial plant and herein its cytotoxicity and antimalarial activity were investigated. Spectral analysis of the tetraoxygenated xanthone decussatin and the iridoid aglyone amplexine isolated, respectively, from the chloroform fractions of root methanol and leaf ethanol extracts was performed. In vitro inhibition of the growth of Plasmodium falciparum Welch was evaluated using optical microscopy on blood smears. Crude extracts of leaves and roots were inactive in vitro. However, chloroform fractions of the root and leaf extracts [half-maximal inhibitory concentration (IC50) = 10.5 and 35.8 µg/mL, respectively] and amplexine (IC50= 7.1 µg/mL) were active in vitro. Extracts and fractions were not toxic to type MRC-5 human fibroblasts (IC50> 50 µg/mL). Water extracts of the roots of T. grandiflora administered by mouth were the most active extracts in the Peters 4-day suppression test in Plasmodium berghei-infected mice. At 500 mg/kg/day, these extracts exhibited 45-59% inhibition five to seven days after infection. T. grandiflora infusions, fractions and isolated substance have potential as antimalarials.
Resumo:
Despite recent advances in the treatment of some forms of leishmaniasis, the available drugs are still far from ideal due to inefficacy, parasite resistance, toxicity and cost. The wide-spectrum antimicrobial activity of 2-nitrovinylfuran compounds has been described, as has their activity against Trichomonas vaginalis and other protozoa. Thus, the aim of this study was to test the antileishmanial activities of six 2-nitrovinylfurans in vitro and in a murine model of leishmaniasis. Minimum parasiticide concentration (MPC) and 50% inhibitory concentration (IC50) values for these compounds against the promastigotes of Leishmania amazonensis, Leishmania infantum and Leishmania braziliensis were determined, as were the efficacies of two selected compounds in an experimental model of cutaneous leishmaniasis (CL) caused by L. amazonensis in BALB/c mice. All of the compounds were active against the promastigotes of the three Leishmania species tested. IC50 and MPC values were in the ranges of 0.8-4.7 µM and 1.7-32 µM, respectively. The compounds 2-bromo-5-(2-bromo-2-nitrovinyl)-furan (furvina) and 2-bromo-5-(2-methyl-2-nitrovinyl)-furan (UC245) also reduced lesion growth in vivo at a magnitude comparable to or higher than that achieved by amphotericin B treatment. The results demonstrate the potential of this class of compounds as antileishmanial agents and support the clinical testing of Dermofural(r) (a furvina-containing antifungal ointment) for the treatment of CL.