13 resultados para TeO2-based bulk glasses
em Scielo Saúde Pública - SP
Resumo:
Optical spectroscopy in the 400-1700nm wavelength range was performed on rare earth doped heavy metal fluoride (HMF) glasses. In the present work In-based fluoride glasses with a fixed 2 mol % YbF3 concentration and an ErF3 content ranging from 0 to 8 mol % were investigated. According to the experimental spectroscopic data a dependence in the absorption coefficient, the photoluminescence intensity and in the radiative lifetime could be verified as a function of the ErF3 content. In addition, at liquid nitrogen temperature, light emission corresponding to indirect transitions in the infrared energy range could be easily observed as a consequence of the low phonon frequency characteristic of this class of fluoride glasses. For all the studied compositions, strong upconversion to the green and red light was observed by pumping these Er3+- and Yb3+-doped HMF glasses with 790 and 980nm photon sources.
Resumo:
Macroporosity is often used in the determination of soil compaction. Reduced macroporosity can lead to poor drainage, low root aeration and soil degradation. The aim of this study was to develop and test different models to estimate macro and microporosity efficiently, using multiple regression. Ten soils were selected within a large range of textures: sand (Sa) 0.07-0.84; silt 0.03-0.24; clay 0.13-0.78 kg kg-1 and subjected to three compaction levels (three bulk densities, BD). Two models with similar accuracy were selected, with a mean error of about 0.02 m³ m-3 (2 %). The model y = a + b.BD + c.Sa, named model 2, was selected for its simplicity to estimate Macro (Ma), Micro (Mi) or total porosity (TP): Ma = 0.693 - 0.465 BD + 0.212 Sa; Mi = 0.337 + 0.120 BD - 0.294 Sa; TP = 1.030 - 0.345 BD 0.082 Sa; porosity values were expressed in m³ m-3; BD in kg dm-3; and Sa in kg kg-1. The model was tested with 76 datum set of several other authors. An error of about 0.04 m³ m-3 (4 %) was observed. Simulations of variations in BD as a function of Sa are presented for Ma = 0 and Ma = 0.10 (10 %). The macroporosity equation was remodeled to obtain other compaction indexes: a) to simulate maximum bulk density (MBD) as a function of Sa (Equation 11), in agreement with literature data; b) to simulate relative bulk density (RBD) as a function of BD and Sa (Equation 13); c) another model to simulate RBD as a function of Ma and Sa (Equation 16), confirming the independence of this variable in relation to Sa for a fixed value of macroporosity and, also, proving the hypothesis of Hakansson & Lipiec that RBD = 0.87 corresponds approximately to 10 % macroporosity (Ma = 0.10 m³ m-3).
Resumo:
Under field conditions in the Amazon forest, soil bulk density is difficult to measure. Rigorous methodological criteria must be applied to obtain reliable inventories of C stocks and soil nutrients, making this process expensive and sometimes unfeasible. This study aimed to generate models to estimate soil bulk density based on parameters that can be easily and reliably measured in the field and that are available in many soil-related inventories. Stepwise regression models to predict bulk density were developed using data on soil C content, clay content and pH in water from 140 permanent plots in terra firme (upland) forests near Manaus, Amazonas State, Brazil. The model results were interpreted according to the coefficient of determination (R2) and Akaike information criterion (AIC) and were validated with a dataset consisting of 125 plots different from those used to generate the models. The model with best performance in estimating soil bulk density under the conditions of this study included clay content and pH in water as independent variables and had R2 = 0.73 and AIC = -250.29. The performance of this model for predicting soil density was compared with that of models from the literature. The results showed that the locally calibrated equation was the most accurate for estimating soil bulk density for upland forests in the Manaus region.
Resumo:
ABSTRACT Quantitative assessment of soil physical quality is of great importance for eco-environmental pollution and soil quality studies. In this paper, based on the S-theory, data from 16 collection sites in the Haihe River Basin in northern China were used, and the effects of soil particle size distribution and bulk density on three important indices of theS-theory were investigated on a regional scale. The relationships between unsaturated hydraulic conductivityKi at the inflection point and S values (S/hi) were also studied using two different types of fitting equations. The results showed that the polynomial equation was better than the linear equation for describing the relationships between -log Ki and -logS, and -log Kiand -log (S/hi)2; and clay content was the most important factor affecting the soil physical quality index (S). The variation in the S index according to soil clay content was able to be fitted using a double-linear-line approach, with decrease in the S index being much faster for clay content less than 20 %. In contrast, the bulk density index was found to be less important than clay content. The average S index was 0.077, indicating that soil physical quality in the Haihe River Basin was good.
Resumo:
We describe the preparation and some optical properties of high refractive index TeO2-PbO-TiO2 glass system. Highly homogeneous glasses were obtained by agitating the mixture during the melting process in an alumina crucible. The characterization was done by X-ray diffraction, Raman scattering, light absorption and linear refractive index measurements. The results show a change in the glass structure as the PbO content increases: the TeO4 trigonal bipyramids characteristics of TeO2 glasses transform into TeO3 trigonal pyramids. However, the measured refractive indices are almost independent of the glass composition. We show that third-order nonlinear optical susceptibilities calculated from the measured refractive indices using Lines' theoretical model are also independent of the glass composition.
Resumo:
Fabrication of new optical devices based upon the incorporation of rare earth ions via sol-gel methods depends on elimination of dopant ion clusters and residual hydroxyl groups from the final material. The optical absorption and/or luminescence properties of luminescent rare earth ions are influenced by the local bonding environment and the distribution of the rare-earth dopants in the matrix. Typically, dopants are incorporated into gel via dissolution of soluble species into the initial precursor sol. In this work, Eu3+ is used as optical probe, to assess changes in the local environment. Results of emission, excitation, fluorescence line narrowing and lifetimes studies of Eu3+-doped gels derived from Si(OCH3)4 and fluorinated/chelate Eu3+ precursors are presented. The precursors used in the sol-gel synthesis were: tris (6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedionate) Eu(III), Eu (III) trifluoromethanesulfonate, Eu(III) acetylacetonate hydrate, Eu (III) trifluoroacetate trihidrate, tris (2,2,6,6-tetramethyl-3,5- heptanedionate) Eu(III) and Eu(NO3)3.6H2O. The results were interpreted in terms of the evolution of the Eu3+ fluorescence in systems varying from solution to the gels densified to 800ºC. The lifetimes studies indicate that the fluorinated precursors are effective at reducing the water content in densified gels.
Resumo:
Three simple, sensitive, economical and reproducible spectrophotometric methods (A, B and C) are described for determination of mesalamine in pure drug as well as in tablet dosage forms. Method A is based on the reduction of tungstate and/or molybdate in Folin Ciocalteu's reagent; method B describes the reaction between the diazotized drug and α-naphthol and method C is based on the reaction of the drug with vanillin, in acidic medium. Under optimum conditions, mesalamine could be quantified in the concentration ranges, 1-30, 1-15 and 2-30 µg mL-1 by method A, B and C, respectively. All the methods have been applied to the determination of mesalamine in tablet dosage forms. Results of analysis are validated statistically.
Resumo:
Two simple sensitive and cost-effective spectrophotometric methods are described for the determination of lansoprazole (LPZ) in bulk drug and in capsules using ceric ammonium sulphate (CAS), iron (II), orthophenanthroline and thiocyanate as reagents. In both methods, an acidic solution of lansoprazole is treated with a measured excess of CAS followed by the determination of unreacted oxidant by two procedures involving different reaction schemes. The first method involves the reduction of residual oxidant by a known amount of iron(II), and the unreacted iron(II) is complexed with orthophenanthroline at a raised pH, and the absorbance of the resulting complex measured at 510 nm (method A). In the second method, the unreacted CAS is reduced by excess of iron (II), and the resulting iron (III) is complexed with thiocyanate in the acid medium and the absorbance of the complex measured at 470 nm (method B). In both methods, the amount CAS reacted corresponds to the amount of LPZ. In method A, the absorbance is found to increase linearly with the concentration of LPZ where as in method B a linear decrease in absorbance occurs. The systems obey Beer's law for 2.5-30 and 2.5-25 µg mL-1 for method A and method B, respectively, and the corresponding molar absorptivity values are 8.1×10³ and 1.5×10(4) L mol-1cm-1 . The methods were successfully applied to the determination of LPZ in capsules and the results tallied well with the label claim. No interference was observed from the concomitant substances normally added to capsules.
Resumo:
Two simple, rapid and cost-effective methods based on titrimetric and spectrophotometric techniques are described for the assay of RNH in bulk drug and in dosage forms using silver nitrate, mercury(II)thiocyanate and iron(III)nitrate as reagents. In titrimetry, an aqueous solution of RNH is treated with measured excess of silver nitrate in HNO3 medium, followed by determination of unreacted silver nitrate by Volhard method using iron(III) alum indicator. Spectrophotometric method involve the addition a known excess of mercury(II)thiocyanate and iron(III)nitrate to RNH, followed by the measurement of the absorbance of iron(III)thiocyante complex at 470 nm. Titrimetric method is applicable over 4-30 mg range and the reaction stoichiometry is found to be 1:1 (RNH: AgNO3). In the spectrophotometric method, the absorbance is found to increase linearly with concentration of RNH which is corroborated by the correlation coefficient of 0.9959. The system obey Beer's law for 5-70 µg mL-1. The calculated apparent molar absorptivity and sandell sensitivity values are found to be 3.27 ´ 10³ L mol-1 cm-1, 0.107 µg cm-2 respectively. The limits of detection and quantification are also reported for the spectrophotometric method. Intra-day and inter-day precision and accuracy of the methods were evaluated as per ICH guidelines. The methods were successfully applied to the assay of RNH in formulations and the results were compared with those of a reference method by applying Student's t and F-tests. No interference was observed from common pharmaceutical excipients. The accuracy of the methods was further ascertained by performing recovery tests by standard addition method.
Resumo:
Two sensitive spectrophotometric methods are described for the determination of lansoprazole (LPZ) in bulk drug and in capsule formulation. The methods are based on the oxidation of lansoprazole by insitu generated bromine followed by determination of unreacted bromine by two different reaction schemes. In one procedure (method A), the residual bromine is treated with excess of iron (II), and the resulting iron (III) is complexed with thiocyanate and measured at 470 nm. The second approach (method B) involves treating the unreacted bromine with a measured excess of iron (II) and remaining iron (II) is complexed with orthophenanthroline at a raised pH, and measured at 510 nm. In both methods, the amount of bromine reacted corresponds to the amount of LPZ. The experimental conditions were optimized. In method A, the absorbance is found to decrease linearly with the concentration of LPZ (r = -0.9986) where as in the method B a linear increase in absorbance occurs (r = 0.9986) The systems obey Beer's law for 0.5-4.0 and 0.5-6.0 µg mL-1 for method A and method B, respectively. The calculated molar absorptivity values are 3.97µ10(4) and 3.07µ10(4) L mol-1cm-1 for method A and method B, respectively, and the corresponding Sandell sensitivity values are 0.0039 and 0.0013 µg cm-2. The limit of detection (LOD) and quantification (LOQ) are also reported for both methods. Intra-day and inter-day precision, and accuracy of the methods were established as per the current ICH guidelines. The methods were successfully applied to the determination of LPZ in capsules and the results tallied well with the label claim and the results were statistically compared with those of a reference method by applying the Student's t-test and F-test. No interference was observed from the concomitant substances normally added to capsules. The accuracy and validity of the methods were further ascertained by performing recovery experiments via standard-addition method.
Resumo:
Two sensitive spectrophotometric methods are described for the determination of simvastatin (SMT) in bulk drug and in tablets. The methods are based on the oxidation of SMT by a measured excess of cerium (IV) in acid medium followed by determination of unreacted oxidant by two different reaction schemes. In one procedure (method A), the residual cerium (IV) is reacted with a fixed concentration of ferroin and the increase in absorbance is measured at 510 nm. The second approach (method B) involves the reduction of the unreacted cerium (IV) with a fixed quantity of iron (II), and the resulting iron (III) is complexed with thiocyanate and the absorbance measured at 470 nm. In both methods, the amount of cerium (IV) reacted corresponds to SMT concentration. The experimental conditions for both methods were optimized. In method A, the absorbance is found to increase linearly with SMT concentration (r = 0.9995) whereas in method B, the same decreased (r = -0.9943). The systems obey Beer's law for 0.6-7.5 and 0.5-5.0 µg mL-1 for method A and method B, respectively. The calculated molar absorptivity values are 2.7 X 10(4) and 1.06 X 10(5) Lmol-1 cm-1, respectively; and the corresponding sandel sensitivity values are 0.0153 and 0.0039µg cm-2, respectively. The limit of detection (LOD) and quantification (LOQ) are reported for both methods. Intra-day and inter-day precision, and accuracy of the methods were established as per the current ICH guidelines. The methods were successfully applied to the determination of SMT in tablets and the results were statistically compared with those of the reference method by applying the Student's t-test and F-test. No interference was observed from the common excipients added to tablets. The accuracy and validity of the methods were further ascertained by performing recovery experiments via standard addition procedure.
Resumo:
A direct, extraction-free spectrophotometric method has been developed for the determination of acebutolol hydrochloride (ABH) in pharmaceutical preparations. The method is based on ion-pair complex formation between the drug and two acidic dyes (sulphonaphthalein) namely bromocresol green (BCG) and bromothymol blue (BTB). Conformity to Beer's law enabled the assay of the drug in the range of 0.5-13.8 µg mL-1 with BCG and 1.8-15.9 µg mL-1 with BTB. Compared with a reference method, the results obtained were of equal accuracy and precision. In addition, these methods were also found to be specific for the analysis of acebutolol hydrochloride in the presence of excipients, which are co-formulated in the drug.
Resumo:
Two new, simple, rapid and reproducible spectrophotometric methods have been developed for the determination of lamotrigine (LMT) both in pure form and in its tablets. The first method (method A) is based on the formation of a colored ion-pair complex (1:1 drug/dye) of LMT with bromocresol green (BCG) at pH 5.02±0.01 and extraction of the complex into dichloromethane followed by the measurement of the yellow ion-pair complex at 410 nm. In the second (method B), the drug-dye ion-pair complex was dissolved in ethanolic potassium hydroxide and the resulting base form of the dye was measured at 620 nm. Beer's law was obeyed in the concentration range of 1.5-15 µg mL-1 and 0.5-5.0 µg mL-1 for method A and method B, respectively, and the corresponding molar absorptivity values are 1.6932 x 10(4) and 3.748 x 10(4) L mol-1cm-1. The Sandell sensitivity values are 0.0151 and 0.0068 µg cm-2 for method A and method B, respectively. The stoichiometry of the ion-pair complex formed between the dug and dye (1:1) was determined by Job's continuous variations method and the stability constant of the complex was also calculated. The proposed methods were applied successfully for the determination of drug in commercial tablets.