51 resultados para Tantalum oxide films
em Scielo Saúde Pública - SP
Resumo:
Working with low voltage microscope (R.C.A., EMC-2, of 30KV.) the authors verified that parlodion and Formvar films are quickly destroyed by intense heating under the electron beam. They have tried to employ oxide films, as Al2O3 and SiO, more resistant to heat. Al2O3 films are prepared by anodic oxidation of thin aluminium sheets, under 8 to 10 volts in a 3% ammonium citrate solution and subsequent aluminium dissolution in a O.25% HgCl2 solution. These films are very suitable when prepared with highly pure aluminium of extremely homogeneous surface. Best results were obtained with SiO films, evaporated in high vacuum over Parlodion films mounted on metallic grids. Employing 1 or 1.5 mg of SiOm highly homogeneous and resistant films are obtained, having little inferior transparence than the Parlodion ones. Pure SiO films (1.5 mg) are obtained by elimination of the Parlodion under slow heating until 250°C; they are greatly transparent but little resistant to water, thus beeing indicated in dry preparations. For particles which deposite in a chain-like form around thin fibers, the authors employ the mounting on Parlodion fibers, obtained by heating Parlodion films on microscope grids about 190°C.
Resumo:
In this paper some studies concerning the electroreduction of Mo(VI) in sulphuric acid solutions are described. We have shown that at suitable experimental conditions very stable molybdenum oxide films can be electrochemically deposited at glassy carbon electrodes, the reduction of bromate occurring at less negative potentials on the modified surface. Coulometric experiments have shown that bromide is not the only product of the catalytic bromate reduction by the molybdenum film and species like BrO2 may have part in this process. Based on chronoamperometric curves recorded at -0.60 V, analytical curves have been obtained for the reduction of bromate in the 0.1 - 0.8 mM range, a limit of detection of 20 µM for bromate being determined.
Resumo:
The aim of this work is to study the electrochromism and the reaction kinetics of lithium electrointercalation in anodic niobium oxide films. The oxide grown in an acid environment by application of an alternating potential shows interference colour (iridescence) and when reduced in lithium perclorate/PC solution, the intercalation of Li+ ions and electrons causes a reversible colour change (electrochromism), characterized here by electrochemical and optical measurements. A model where the reaction kinetics is dominated by diffusion of ionic pairs (Li+, e-) in the oxide film permitted the reproduction of current and absorbance temporal dependence, confirming the relationship between the electrochromic and electrochemical reactions. From the results obtained, a relation was established where the colour change is associated to the reduction of Nb+5 to Nb+4 ions with simultaneous cations injection.
Resumo:
Titanium dioxide was prepared by hydrolysis and polycondensation of titanium tetraisopropoxide. TiO2 films were obtained by spin coating of the precursor solution on ITO substractes (glass covered with indium doped tin oxide). Films were prepared using different temperatures and hydrochloric acid contents. The effect of the drying temperature of the films (100 or 400ºC) was also investigated. TiO2 films were characterized by cyclic voltammetry, chronoamperometry, ultraviolete-visible spectroscopy, scanning electron microscopy and X-ray diffractrometry.
Resumo:
Tungsten oxide thin films with three different compositions were deposited by reactive sputtering in an oxygen-argon plasma. In a system composed of a home made photochemical reactor coupled with an optic fiber spectrophotometer, the photochromic effect was studied in these oxide films as function of UV irradiation time, in ethanol, methanol and formaldehyde atmospheres. It was observed that the photochromic efficiency depends on the vapor chemical nature where the film is irradiated as well as the film composition. Kinetic analysis suggest that two kinds of optical absorption centers should respond by the photochromic effect in these films, one generated at film surface and other inside it, which one presenting a different time constant.
Resumo:
The physical and electrochemical properties of Ti-SnO2/Sb electrodes obtained by the thermal decomposition of solutions of the precursor salts SnCl2×2H2O/SbCl3 and SnSO4/Sb2(SO4)3 were investigated. The reversibility of the cyclic voltammetric response of the Fe(CN)6(4-)/Fe(CN)6(3-) redox couple was assessed using the obtained electrodes. Their catalytic activity for the oxygen-evolving reaction and maximum capacity for electronic transfer were also evaluated by potential and current linear scans in 0.5 mol L-1 H2SO4. Additionally, scanning electron microscopy analyses allowed the visualization of the morphology of the oxide films obtained. The best results were presented by the electrodes obtained from the chloride salt precursors.
Resumo:
Surface and electrochemical properties of the dimensionally stable anode Ti/(Ru0.3Ti0.7)O2 were studied as a function of the annealing temperature using different conditions in order to perform the cooling process of the oxide films (conventional thermal shock and the slow cooling processes). It was found that surface and electrochemical properties for the oxygen evolution reaction are both affected through the cooling process, being the electrode prepared at 400 ºC using the slow cooling process the less susceptible to wear. The Tafel slope obtained in the high overpotential domain was analysed in light of the apparent charge transfer coefficient.
Resumo:
Electrodes consisting of Pt nanoparticles dispersed on thin films of niobium oxide were prepared onto titanium substrates by a sol-gel method. The physical characterization of these electrodes was carried out by X-ray diffraction, scanning electron microscopy and energy dispersive X-ray analysis. The mean size of the Pt particles was found to be 10.7 nm. The general aspects of the electrochemical behavior were studied by cyclic voltammetry in 1 mol L-1 HClO4 aqueous solution. The response of these electrodes in relation to the oxidation of formaldehyde and methanol in acidic media was also studied.
Resumo:
Lychee (Litchi chinensis Sonn.) has a high commercial value; however, it has a short shelf-life because of its rapid pericarp browning. The objective of this study was to evaluate the shelf-life of 'Bengal' lychee fruits stored after treatment with hydrochloric acid and citric acid, associated with cassava starch and plastic packaging. Uniformly red pericarp fruits were submitted to treatments: 1-(immersion in citric acid 100 mM for 5 minutes + cassava starch 30 g L-1 for 5 minutes), 2-(immersion in hydrochloric acid 1 M for 2 minutes + starch cassava 30 g L-1 for 5 minutes), 3-(immersion in citric acid 100 mM for 5 minutes + polyvinyl chloride film (PVC, 14 µm thick)) and 4-(immersion in hydrochloric acid 1 M for 2 minutes + PVC film). During 20 days, the fruits were evaluated for mass loss, pericarp color, pH, soluble solids and titratable acidity, vitamin C of the pulp and pericarp and activities of polyphenol oxidase and peroxidase of the pericarp. The treatment with hydrochloric acid associated with PVC was the most effective in maintaining the red color of the pericarp for a period of 20 days and best preservation of the fruit. The cassava starch associated with citric acid, and hydrochloric acid did not reduce the mass loss and did not prevent the browning of lychee fruit pericarp.
Resumo:
Paracoccidioidomycosis is a chronic granulomatous disease that induces a specific inflammatory and immune response. The participation of nitric oxide (NO), a product of the inducible nitric oxide synthase enzyme (iNOS), as an important fungicidal molecule against Paracoccidioides brasiliensis has been demonstrated. In order to further characterize the Oral Paracoccidioidomycosis (OP), we undertook an immunohistochemical study of iNOS+, CD45RO+, CD3+, CD8+, CD20+, CD68+ cells and mast cells. The samples were distributed in groups according to the number of viable fungi per mm². Our results showed weak immunolabeling for iNOS in the multinucleated giant cells (MNGC) and in most of the mononuclear (MN) cells, and the proportion of iNOS+ MN/MNGC cells in the OP were comparable to Control (clinically healthy oral tissues). Additionally, our analysis revealed a similarity in the number of CD4+ cells between the Control and the OP groups with higher numbers of fungi. These findings suggest that a low expression of iNOS and a decrease in the CD4+ T cells in OP may represent possible mechanisms that permit the local fungal multiplication and maintenance of active oral lesions.
Resumo:
Iron is an essential growth element of virtually all microorganisms and its restriction is one of the mechanisms used by macrophages to control microbial multiplication. Paracoccidioides brasiliensis, the agent of paracoccidioidomycosis, an important systemic mycosis in Latin America, is inhibited in its conidia-to-yeast conversion in the absence of iron. We studied the participation of iron in the nitric oxide (NO)-mediated fungicidal mechanism against conidia. Peritoneal murine macrophages activated with 50U/mL of IFN-gamma or treated with 35 µM Deferoxamine (DEX) and infected with P. brasiliensis conidia, were co-cultured and incubated for 96 h in the presence of different concentrations of holotransferrin (HOLO) and FeS0(4). The supernatants were withdrawn in order to assess NO2 production by the Griess method. The monolayers were fixed, stained and observed microscopically. The percentage of the conidia-to-yeast transition was estimated by counting 200 intracellular propagules. IFN-gamma-activated or DEX-treated Mthetas presented marked inhibition of the conidia-to-yeast conversion (19 and 56%, respectively) in comparison with non-activated or untreated Mthetas (80%). IFN-gamma-activated macrophages produced high NO levels in comparison with the controls. Additionally, when the activated or treated-macrophages were supplemented with iron donors (HOLO or FeSO4), the inhibitory action was reversed, although NO production remained intact. These results suggest that the NO-mediated fungicidal mechanism exerted by IFN-gamma-activated macrophages against P. brasiliensis conidia, is dependent of an iron interaction.
Resumo:
The Flaviviridae family, Flavivirus genus includes viruses that are transmitted to vertebrates by infected mosquitoes or ticks. The genus Flavivirus includes a variety of viruses that cause diseases such as acute febrile illness, encephalitis, and hemorrhagic fever. Flaviviruses primarily infect blood monocytes and tissue macrophages, which have been shown to be permissive, supporting viral replication and serving as virus reservoirs. On the other hand, these cells may have an important antiviral activity related to modulation by cytokine production and by the capacity of these cells to synthesize reactive free radicals such as nitric oxide (NO) which can have a microbicidal effect. The present study was performed in order to determine the production of cytokines interleukin-1beta (IL-1β), tumor necrosis factor -alpha (TNF-α), transforming growth factor- beta (TGF-β) and interferon -alpha (IFN-α) and NO by macrophages infected with one of four Brazilian flaviviruses, Bussuquara virus (BUSV), Yellow Fever virus (YFV), Rocio virus (ROCV) and Encephalitis Saint Louis virus (SLEV), and to verify the possible antiviral effect of NO during macrophage infection with ROCV. Moreover, we asked if the different viruses were able to regulate bacterial lipopolysaccharide (LPS) induced cytokine production. Our results showed that YFV and SLEV reduced the production of IL-1β and TGF-β by LPS-stimulated macrophages, while ROCV only diminished LPS-stimulated TGF-β synthesis. On the other hand, BUSV more likely favored an enhancement of the LPS-induced production of IL-1β by macrophages. Additionally, while most of the viruses stimulated the production of IFN-α, none of them altered the production of TNF-α by murine macrophages. Interestingly, all viruses induced synthesis of NO that was not correlated with antiviral activity for ROCV.
Resumo:
Twelve strains of Trypanosoma cruzi isolated from wild reservoirs, triatomines, and chronic chagasic patients in the state of Paraná, southern Brazil, and classified as T. cruzi I and II, were used to test the correlation between genetic and biological diversity. The Phagocytic Index (PI) and nitric-oxide (NO) production in vitro were used as biological parameters. The PI of the T. cruzi I and II strains did not differ significantly, nor did the PI of the T. cruzi strains isolated from humans, triatomines, or wild reservoirs. There was a statistical difference in the inhibition of NO production between T. cruzi I and II and between parasites isolated from humans and the strains isolated from triatomines and wild reservoirs, but there was no correlation between genetics and biology when the strains were analyzed independently of the lineages or hosts from which the strains were isolated. There were significant correlations for Randomly Amplified Polymorphic Deoxyribonucleic acid (RAPD) and biological parameters for T. cruzi I and II, and for humans or wild reservoirs when the lineages or hosts were considered individually.
Resumo:
The aim of this investigation was to determine nitric oxide metabolite levels in saliva samples from hepatitis C virus-positive patients in an attempt to test the hypothesis if increased levels of nitric oxide metabolites correlates with the presence of HCV-RNA in saliva. Saliva of 39 HCV-positive patients and 13 HCV-negative patients, without clinical or laboratorial evidence of liver disease were tested for nitric oxide metabolites. HCV-RNA was detected in serum and saliva by a RT-PCR method and nitric oxide level was determined by evaluation of its stable degradation products, nitrate and nitrite. No differences were found between the concentration of nitrite in saliva from HCV patients and controls, in despite of the presence or not of HCV RNA in saliva. Patients with HCV and cirrhosis had higher concentrations of nitrite but not significantly different from the control group or the groups of anti-HCV patients without cirrhosis. Increased levels of nitrite were not detected in anti-HCV positive patients, an indirect indication that chronic sialoadenitis are infrequent in these patients or occurs with low intensity not sufficient to increase nitric oxide metabolite levels in saliva.
Resumo:
Introduction The immune response caused by Mycobacterium leprae is a risk factor for the development of oxidative stress (OS) in leprosy patients. This study aimed to assess OS in leprosy patients before the use of a multidrug therapy. Methods We evaluated the nitric oxide (NO) concentration; antioxidant capacity; levels of malondialdehyde, methemoglobin and reduced glutathione; and the activity of catalase and superoxide dismutase (SOD) in leprosy patients. Results We observed lower SOD activity in these leprosy patients; however, the NO levels and antioxidant capacity were increased. Conclusions The infectious process in response to M. leprae could primarily be responsible for the OS observed in these patients.