703 resultados para TRYPANOSOMA-CRUZI EPIMASTIGOTES
em Scielo Saúde Pública - SP
Resumo:
The mechanisms that facilitate the adaptation of Trypanosoma cruzi to two distinct hosts, insect and vertebrate, are poorly understood, in part due to the limited ability to perform gene disruption studies by homologous recombination. This report describes a developmentally-defective phenotype that resulted from integration of a drug marker adjacent to the GAPDH gene in T. cruzi.
Resumo:
In this study the effect of eight DNA topoisomerase inhibitors on the growth Trypanosoma rangeli epimastigotes in cell culture was investigated. Among the eight compounds tested, idarubicin was the only compound that displayed promising trypanocidal activity with a half-maximal growth inhibition (GI50) value in the sub-micromolar range. Fluorescence-activated cell sorting analysis showed a reduction in DNA content in T. rangeli epimastigotes when treated with idarubicin. In contrast to T. rangeli, against Trypanosoma cruzi epimastigotes idarubicin was much less effective exhibiting a GI50 value in the mid-micromolar range. This result indicates that idarubicin displays differential toxic effects in T. rangeli and T. cruzi. Compared with African trypanosomes, it seems that American trypanosomes are generally less susceptible to DNA topoisomerase inhibitors.
Resumo:
The morphological identification of Trypanosoma cruzi is currently considered to have a high specificity, but its sensitivity, which depends on the volume of the sample examined, is rather low. Trypanosome developmental stages suspended in blood, reduviid feces, and culture media are routinely searched for by means of fresh film examination (about 2 µL). High speed centrifugation of blood samples separates the buffy coat, where most trypomastigotes concentrate. As the parasites are transparent and colorless, their detection is mostly dependent on their motility. The fluorescent vital stain acridine orange has been used to enhance image contrast, as exemplified by the QBC (Quantitative Buffy Coat) technique. Staining blood, buffy coat, reduviid feces, and culture media samples with methylene blue (also a vital dye) is a means of producing sharp, well contrasted images of motile or non-motile T. cruzi developmental stages, only standard laboratory microscopes being required. Slides previously coated with a thin layer of methylene blue are used to stain fresh blood films. Photomicrographs exemplify the results of methylene blue staining applied to living and fixed parasites.
Resumo:
N-allyl (NAOx) and N-propyl (NPOx) oxamates were designed as inhibitors of alpha-hydroxyacid dehydrogenase (HADH) isozyme II from Trypanosoma cruzi. The kinetic studies showed that NAOx and NPOx were competitive inhibitors of HADH-isozyme II (Ki = 72 µM, IC50 = 0.33 mM and 70 µM, IC50 = 0.32 mM, respectively). The attachment of the allylic and propylic chains to nitrogen of the competitive inhibitor oxamate (Ki = 0.91 mM, IC50 = 4.25 mM), increased 12.6 and 13-folds respectively, the affinity for T. cruzi HADH-isozyme II. NAOx and NPOx were selective inhibitors of HADH-isozyme II, because other T. cruzi dehydrogenases were not inhibited by these substances. Since HADH-isozyme II participates in the energy metabolism of T. cruzi, a trypanocidal effect can be expected with these inhibitors. However, we were not able to detect any trypanocidal activity with these oxamates. When the corresponding ethyl esters of N-allyl (Et-NAOx) and N-propyl (Et-NPOx) oxamates were tested as a possible trypanocidal prodrugs, in comparison with nifurtimox and benznidazole, the expected trypanocidal effects were obtained.
Resumo:
In our laboratory, we have developed a model of vaccination in mice with Trypanosoma rangeli, a non-pathogenic parasite that shares many antigens with Trypanosoma cruzi. The vaccinated mice were protected against infection with virulent T. cruzi. The goal of the present work was to study the protective activity of strains of T. rangeli of different origin, with the aim of analysing whether this protective capacity is a common feature of T. rangeli. BALB/c mice were vaccinated with live or fixed epimastigotes of two T. rangeli strains, Choachi and SC-58. Vaccinated (VM) and control mice (CM) were infected with virulent T. cruzi, Tulahuen strain. The results showed that the levels of parasitemia of VM, vaccinated with the two strains of T. rangeli were significantly lower than those developed in CM. The survival rate of VM was higher than that CM. Histological studies revealed many amastigote nests and severe inflammatory infiltrates in the heart and skeletal muscles of CM, whereas in the VM only moderate lymphomonocytic infiltrates were detected. Altogether, the results of the present work as well as previous studies show that the antigens involved in the protection induced by T. rangeli are expressed in different strains of this parasite. These findings could prove useful in vaccine preparation.
Resumo:
Differences in cell charge between epimastigote and trypomastigote populations were compared in Y, Cl and Colombiana strains of T. cruzi. Trypomastigote populations were more homogenous in relation to cell charge than epimastigotes. This homogeneity of cell charge was not the result of the selection of trypomastigote sub-populations by the host immunosystem, but may be the result of a surface coat formed by host blood components.
Resumo:
The infectivity amastigotes of Trypanosoma cruzi, isolated from the supernatant of the J774G8 macrophage-like cell line infected with trypomastigotes to normal macrophages in vitro was tested. After a period of 1 h of T. cruzi-macrophage interaction about 2% of the mouse peritoneal macrophages had ingested amastigotes. In contrast 12% of the macrophages had ingested epimastigotes. Treatment of the amastigotes with trypsin did not interfere with their ingestion by macrophages. Once inside the macrophages the amastigotes divided and after some days transformed into trypomastigotes. When i.p. inoculated into mice the amastigotes were highly infective, inducing high levels of parasitaemia and tissue parasitism. As previously described for trypomastigotes, amastigotes were not lysed when incubated in the presence of fresh guinea-pig serum. Contrasting with what has been described for trypomastigotes, the resistance of amastigotes to complement-mediated lysis persisted after treatment with trypsin.
Resumo:
Sera of Chaga's disease patients containing anti-T. cruzi lytic antibodies were submitted to affinity chromatography using Sepharose 4B conjugated with antigen extracted from epimasiigote or trypomasiigote forms of the parasite. Epimastigotes were obtained from culture at the exponential growth phase and the trypomastigotes from blood of infected and immunosuppressed mice. Antigen of both parasite forms was obtained by sonication of the parasites followed by centrifugation. Both antigens were then conjugated to activated Sepharose 4B. Affinity chromatography was performed by passing sera from chagasic patients through an immunoadsorbent column containing either epimasiigote or trypomasiigote antigens. Antibodies bound to the column were eluted with cold 0,2 M glycine buffer pH 2,8. The eluted antibodies were analysed regarding their isotype and lytic activity. The results showed that anti-T. cruzi lytic antibodies present in sera from chagasic patients are mainly located in the IgG isotype and recognize epitopes present in both trypomasiigote and epimastigote forms. A brief report of this work has already been published12.
Resumo:
The effects of infection with Trypanosoma cruzi on the electrocardiographic tracings of mice were studied in 4.groups of animals: (1) normal; (2) infected with a pathogenic T. cruzi strain (TS COB); (3) immunized with 3 intraperitoneal inocula of 10(6) attenuated T. cruzi epimastigotes (TCC) and (4) immunized-infected, which sequentially received the treatments of groups 3 and 2. Infection and protection were confirmed by xenodiagnosis and histopathology. Isolated alterations such as extrasystolia, 1st degree atrioventricular block, arrhythmia and ST elevation were observed in normal as well as infected mice. However, tracings taken repeatedly on each mouse over a 293 day period revealed a set of alterations which were more frequently seen in infected (14/22) than in normal (4/27) animals (p = 0.00048). These alterations consisted of supraventricular tachycardia, sinus bradycardia and persisting, first degree AV blocks, often associated to pacemaker changes. Inoculation of attenuated T. cruzi (group 3) did not increase these alterations (2/27 mice) but significantly prevented their development after challenge with the pathogenic strain (1/19 versus 14/22 mice, p = 0.000095). Thus, preimmunization reduced not only parasitemia but also a pathogenic consequence of T. cruzi infection. This evidence is relevant for immunoprevention studies against Chagas' disease.
Resumo:
Since 1958, we have studied experimental Chagas' disease (CD) by subcutaneous inoculation of 1,000 blood forms of Trypanosoma cruzi (Y strain) in Balb/C. mice. Evolution of parasitemia remained constant, beginning on the 5th and 6th day of the disease, increasing progressively, achieving a maximum on about the 30th day. After another month, only a few forms were present, and they disappeared from the circulation after the third month, as determined from direct examination of slides and the use of a Neubauer Counting Chamber. These events coincided with the appearance of amastigote nests in the tissues (especially the cardiac ones), starting the first week, and following the Gauss parasitemia curve, but they were not in parallel until the chronic stage. In 1997, we began to note the following changes: Parasites appeared in the circulation during the first week and disappeared starting on the 7th day, and there was a coincident absence of the amastigote nests in the tissues. A careful study verified that young forms in the evolutionary cycle of T. cruzi (epi + amastigotes) began to appear alongside the trypomastigotes in the circulation on the 5th and 7th post-inoculation day. At the same time, rounded, oval, and spindle shapes were seen circulating through the capillaries and sinusoids of the tissues, principally of the hematopoietic organs. Stasis occurs because the diameter of the circulating parasites is greater than the vessels, and this makes them more visible. Examination of the sternal bone marrow revealed young cells with elongated forms and others truncated in the shape of a "C" occupying the internal surface of the blood cells that had empty central portions (erythrocytes?). We hypothesize that there could be a loss of virulence or mutation of the Y strain of Trypanosoma cruzi.
Resumo:
Epimastigotes multiplying extracellularly and metacyclic trypomastigotes, stages that correspond to the cycle of Trypanosoma cruzi in the intestinal lumen of its insect vector, were consistently found in the lumen of the anal glands of opossums Didelphis marsupialis inoculated subcutaneously with infective feces of triatomid bugs.
Resumo:
Comparision by scanning electron microscopy (SEM) of Trypanosoma cruzi flagellates attached to the cuticle of the rectal gland of infected Dipetalogaster maxima nymphs, showed marked differences before amd after feeding. Before feeding numerous metacyclic trypomastigotes were observed among the abundant epimastigotes that formed the carpet of flagellates. On the other hand, in insects that were allowed to urinate for 24 hours after a meal, the metacyclics were scarce,indicating that they had been detached by the urine flow. An asymetric type of cell division, probably originating both an epi-and a trypomastigote, was occasionally observed. The occurrence of swellings at different levels of the flagella of epimastigotes suggests that secondary sites of attachment may be common.
Resumo:
Soluble antigens from epimastigotes of Trypanosoma cruzi were analyzed by western blot in terms of their reactivity with sera from patients with Chagas' disease. In addition, sera from patients with visceral (AVL) and tegumentar leishmaniasis (ATL) were also tested in order to identify cross-reactivities with Trypanosoma cruzy antigens. Twenty eight polypeptides with molecular weights ranging from 14 kDa to 113 kDa were identified with sera from Chagas' disease patients. An extensive cross-reactivity was observed when sera from human visceral leishmaniasis were used, while only a slight cross-reaction was observed with sera from tegumentar leishmaniasis. On the other hand, 10 polypeptidesspecifically reacting with sera from Chagas' disease patients were identified. Among them, the antigens with molecular weights of 46 kDa and 25 kDa reacted with all sera teste and may be good candidates for specific immunodiagnosis of Chagas' disease.
Resumo:
The specific antibody responses were compared among susceptible (A/Sn), moderately susceptible (Balb/c) and resistant (C57 BL/lOJ) mice infected with Trypanosoma cruzi (Y strain). Sera obtained during the second week of infection recognized a surface trypomastigote antigen of apparent Mr 80 kDa while displaying complex reactivity to surface epimastigote antigens. Complex trypomastigote antigens recognition was detected around the middle of the third week of infection. No major differences were observed along the infection, among the three strains of mice, neither in the patterns of surface antigen recognition by sera, nor in the titres of antibodies against blood trypomastigotes (lytic antibodies), tissue culture trypomastigotes or epimastigotes. On immunoblot analysis, however, IgG of the resistant strain displayed the most complex array of specificities against both trypo and epimastigote antigens, followed by the susceptible strain. IgM antibodies exhibited a more restricted antigen reactivity, in the three mouse strains studied. Balb/c sera (IgG and IgM) showed the least complex patterns of reactivity to antigens in the range of 30 kDa to 80 kDa. The onset of reactivity in the serum to trypomastigote surface antigens was also dependent on the parasite load to which the experimental animal was subjected.