39 resultados para TRANSFORM INFRARED-SPECTROSCOPY
em Scielo Saúde Pública - SP
Resumo:
Agroindustrial waste in general presents significant levels of nutrients and organic matter and has therefore been frequently put to agricultural use. In this context, the objective of this study was to determine the chemical composition, nitrogen, phosphorus, potassium, calcium, magnesium and carbon content, as well as the qualitative characteristics through Fourier transform infrared spectroscopy of four samples of poultry litter and one sample of cattle manure, from the southwestern region of Paraná, Brazil. Results revealed that, in general, the poultry litter presented higher amount of nutrients and carbon than the cattle manure. The infrared spectra allowed identification of the functional groups present and the differences in degree of sample humification. The statistical treatment confirmed the quantitative and qualitative differences revealed.
Resumo:
Soil organic matter from the surface horizon of two Brazilian soils (a Latosol and a Chernosol), in bulk samples (in situ SOM) and in HF-treated samples (SOM), was characterized by elemental analyses, diffuse reflectance (DRIFT) and transmission Fourier transform infrared spectroscopy (T-FTIR). Humic acids (HA), fulvic acids (FA) and humin (HU) isolated from the SOM were characterized additionally by ultraviolet-visible spectroscopy (UV-VIS). After sample oxidation and alkaline treatment, the DRIFT technique proved to be more informative for the detection of "in situ SOM" and of residual organic matter than T-FTIR. The higher hydrophobicity index (HI) and H/C ratio obtained in the Chernosol samples indicate a stronger aliphatic character of the organic matter in this soil than the Latosol. In the latter, a pronounced HI decrease was observed after the removal of humic substances (HS). The weaker aliphatic character, the higher O/C ratio, and the T-FTIR spectrum obtained for the HU fraction in the Latosol suggest the occurrence of surface coordination of carboxylate ions. The Chernosol HU fraction was also oxygenated to a relatively high extent, but presented a stronger hydrophobic character in comparison with the Latosol HU. These differences in the chemical and functional group composition suggest a higher organic matter protection in the Latosol. After the HF treatment, decreases in the FA proportion and the A350/A550 ratio were observed. A possible loss of FA and condensation of organic molecules due to the highly acid medium should not be neglected.
Resumo:
We propose an analytical method based on fourier transform infrared-attenuated total reflectance (FTIR-ATR) spectroscopy to detect the adulteration of petrodiesel and petrodiesel/palm biodiesel blends with African crude palm oil. The infrared spectral fingerprints from the sample analysis were used to perform principal components analysis (PCA) and to construct a prediction model using partial least squares (PLS) regression. The PCA results separated the samples into three groups, allowing identification of those subjected to adulteration with palm oil. The obtained model shows a good predictive capacity for determining the concentration of palm oil in petrodiesel/biodiesel blends. Advantages of the proposed method include cost-effectiveness and speed; it is also environmentally friendly.
Resumo:
Visible and near infrared (vis-NIR) spectroscopy is widely used to detect soil properties. The objective of this study is to evaluate the combined effect of moisture content (MC) and the modeling algorithm on prediction of soil organic carbon (SOC) and pH. Partial least squares (PLS) and the Artificial neural network (ANN) for modeling of SOC and pH at different MC levels were compared in terms of efficiency in prediction of regression. A total of 270 soil samples were used. Before spectral measurement, dry soil samples were weighed to determine the amount of water to be added by weight to achieve the specified gravimetric MC levels of 5, 10, 15, 20, and 25 %. A fiber-optic vis-NIR spectrophotometer (350-2500 nm) was used to measure spectra of soil samples in the diffuse reflectance mode. Spectra preprocessing and PLS regression were carried using Unscrambler® software. Statistica® software was used for ANN modeling. The best prediction result for SOC was obtained using the ANN (RMSEP = 0.82 % and RPD = 4.23) for soil samples with 25 % MC. The best prediction results for pH were obtained with PLS for dry soil samples (RMSEP = 0.65 % and RPD = 1.68) and soil samples with 10 % MC (RMSEP = 0.61 % and RPD = 1.71). Whereas the ANN showed better performance for SOC prediction at all MC levels, PLS showed better predictive accuracy of pH at all MC levels except for 25 % MC. Therefore, based on the data set used in the current study, the ANN is recommended for the analyses of SOC at all MC levels, whereas PLS is recommended for the analysis of pH at MC levels below 20 %.
Resumo:
The objective of this work was to establish a calibration equation and to estimate the efficiency of near-infrared reflectance (NIR) spectroscopy for evaluating rapeseed oil content in Southern Brazil. Spectral data from 124 half-sib families were correlated with oil contents determined by the chemical method. The accuracy of the equation was verified by coefficient of determination (R²) of 0.92, error of calibration (SEC) of 0.78, and error of performance (SEP) of 1.22. The oil content of ten genotypes, which were not included in the calibration with NIR, was similar to the one obtained by the standard chemical method. NIR spectroscopy is adequate to differentiate oil content of rapeseed genotypes.
Resumo:
Brazil is one of the largest producers and consumers of charcoal in the world. About 50% of its charcoal comes from native forests, with a large part coming from unsustainable operations. The anatomic identification of charcoal is subjective; an instrumental technique would facilitate the monitoring of forests. This study aimed to verify the feasibility of using medium and near infrared reflectance spectroscopy to discriminate native (ipê) from plantation charcoals (eucalyptus). Principal Components Analysis, followed by Discriminant Factorial Analysis formed two different groups indicated by Mahalanobis distances of 40.6 and 80.3 for near and mid infrared, respectively. Validation of the model showed 100% efficacy.
Resumo:
The catalytic decomposition of soybean oil was studied in a fix bed reactor at 673 and 773 K and using amorphous silica-alumina and the zeolites USY, H-Mordenite and H-ZSM-5 as catalysts. Both the selectivity and the catalytic activity were determined by studying the product composition resulting from the chemical reactions. Physicochemical characteristics of the catalysts were obtained by X-ray fluorescence, Fourier Transform infrared spectroscopy, 29Si and 27Al Nuclear Magnetic Ressonance and textural analysis. The zeolites USY and H-ZSM-5, showing higher Brönsted acidity, yielded products with higher concentration in aromatic hydrocarbons, whereas with both H-Mordenite and amorphous silica-alumina the main products were paraffins.
Resumo:
In this work we obtained microporous and mesoporous silica membranes by sol-gel processing. Tetraethylortosilicate (TEOS) was used as precursor. Nitric acid was used as catalyst. In order to study the affect of N,N-dimethylformamide (NDF) as drying additive, we used a molar ratio TEOS/NDF of 1/3. The performance of N,N-dimethylformamide was evaluated through monolithicity measurements. The structural evolutions occurring during the sol-gel transition and in the interconnected network of the membranes during thermal treatment were monitored by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analyses and nitrogen sorption. We noted that in the presence of N,N-dimethylformamide, polymerization goes through a temporary stabilization of oligomers. The Si-O(H) bonds are stronger and belong to a more cross-linked structure for the N,N-dimethylformamide containing sol. The membranes obtained in the presence of N,N-dimethylformamide have larger surface area and its pore structure is in the range of mesoporous. The membranes obtained without additive have pore structure in the range of microporous.
Resumo:
Direct decomposition of NO on copper supported on zeolite catalysts such as MCM-22 and Beta was compared with that on the thoroughly studied Cu-ZSM-5. The catalysts were prepared by ion-exchange in basic media. They were characterized by atomic absorption, surface area, nitrogen adsorption at 77K, X-ray diffraction and temperature programmed reduction. The products of the reaction were analyzed by Fourier transform infrared spectroscopy using a gas cell. Catalytic activity tests indicated that zeolite catalysts, like Beta and MCM-22, lead to NO conversion values comparable to ZSM-5.
Resumo:
A new method has been developed for determining the content of mixtures of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), the HMX/RDX ratio, in explosive compositions by Fourier transform infrared spectroscopy (FT-IR), in the regions MIR (mid infrared) and NIR (near infrared) with reference values obtained by chromatographic analysis (HPLC). Plots of relative MIR (A917 / A783) or NIR absorbance values (A4412 / A4317) versus HMX/RDX ratio determined by HPLC analysis revealed good linear relationships.
Resumo:
2,2',4,4',6,6'-hexanitrostilbene (HNS) is a very important high explosive that is used in a range of military, aerospace and industrial formulations owing to its suitable properties. It is an insensitive and thermaly stable explosive that can be produced from 2,4,6-trinitrotoluene (TNT). This paper shows the characterization of synthesized HNS by different techniques, such as elementary analysis, differential scanning calorimetry (DSC), thermogravimetric analysis (TG), Fourier transform infrared spectroscopy (FT-IR) and through the determination of the heat of combustion in a calorimeter.
Resumo:
The study of fossils has made considerable progress over the last years as a result of the use of new experimental techniques. This paper describes the chemical composition of a fossilized fish of the Cretaceous period, from a 100 million-year-old, material originated from the Araripe Basin (northeastern Brazil). The chemical composition of the fossilized fish was analyzed by means of X-ray powder diffraction and Fourier transform infrared spectroscopy (FT-IR). The spectroscopic study has proven that the main substances found in the fossilized fish are CaCO3 and Ca5(PO4)3(OH). A tentative mechanism to explain the fossilization process is also given.
Resumo:
Coprolites are fossilized faeces that constitute an important source of palaeobiological informations. This paper describes the characterization of some coprolite materials originated from the Romualdo Member of the Santana Formation (Araripe Basin, south of Ceará State in Brazil) by means of two techniques: X-ray powder diffraction and Fourier transform infrared spectroscopy (FT-IR). This characterization allowed us to determine the main composition of the coprolites, of the nodulus (where the coprolites were extracted) and of the sediment (where the nodulus was found) suggesting that the material was produced by a carnivorous fish of the Lower Cretaceous.
Resumo:
Samples of LDPE/modified starch blends 80/20 m/m before and after exposure to gamma rays were examined by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction. The effect of gamma radiation is clearly seen in the samples irradiated at a dose of 25 kGy. The main alteration in the polymeric material after exposure at the radiation range was a decrease in the mechanical properties, alterations in the chemical structure of the blend with an increase in the carbonyl and vinyl indices and the appearance of new crystalline symmetry generating a crystalline domain not existing before in the blend.
Resumo:
Coffee fruit processing is one of the most polluting activities in agriculture due to the large amount of waste generated in the process. In this work, coffee parchment was employed as precursor for the production of carbons activated with ZnCl2 (CAP). The material was characterized using N2 adsorption/desorption at 77 K, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The material showed a surface area of 521.6 m²g-1 and microporous structure. CAP was applied as adsorbent for the removal of methylene blue dye in aqueous medium. The adsorption capacity was found to be about 188.7 mg g-1.