59 resultados para TITANIUM-DIOXIDE FILMS
em Scielo Saúde Pública - SP
Resumo:
Pure and Fe(III)-doped TiO2 suspensions were prepared by the sol gel method with the use of titanium isopropoxide (Ti(OPri)4) as precursor material. The properties of doped materials were compared to TiO2 properties based on the characterization by thermal analysis (TG-DTA and DSC), X-ray powder diffractometry and spectroscopy measurements (FTIR). Both undoped and doped TiO2 suspensions were used to coat metallic substrate as a mean to make thin-film electrodes. Thermal treatment of the precursors at 400ºC for 2 h in air resulted in the formation of nanocrystalline anatase TiO2. The thin-film electrodes were tested with respect to their photocatalytic performance for degradation of a textile dye in aqueous solution. The plain TiO2 remains as the best catalyst at the conditions used in this report.
Resumo:
Titanium dioxide porous thin films on the Anatase phase were deposited onto glass slides by the sol-gel method assisted with polyethylene glycol (PEG). The dip-coated films were characterized using scanning electron microscopy (SEM), thermogravimetric analysis (TGA and DTG), UV-visible spectroscopy and X-ray diffraction (XRD). The photocatalytic activity of the films was determined by means of methyl-orange oxidation tests. The resultant PEG-modified films were crack-free and developed a porous structure after calcination at 500 °C. Photo-oxidation tests showed the dependency of catalytic activity of the films on the number of layers (thickness) and porosity, i.e. of the interfacial area.
Resumo:
The aim of this report is to describe the anatomic-pathologic findings from necropsies of 5 drug addicts with titanium pigment in several organs after chronic intravenous injection of crushed propoxyphene hydrochloride tablets. Samples from liver, spleen, lungs, lymph nodes, and bone marrow were obtained, and after being grossly studied, they were submitted to evaluation using common light and polarized microscopy. In all 5 cases, a pigment with characteristics of titanium dioxide was found within tissue samples of the organs studied. Our findings suggest that research concerning titanium pigment within body tissues should be enhanced, considering the potential contribution of this morphologic data to forensic pathology.
Resumo:
Titanium dioxide was prepared by hydrolysis and polycondensation of titanium tetraisopropoxide. TiO2 films were obtained by spin coating of the precursor solution on ITO substractes (glass covered with indium doped tin oxide). Films were prepared using different temperatures and hydrochloric acid contents. The effect of the drying temperature of the films (100 or 400ºC) was also investigated. TiO2 films were characterized by cyclic voltammetry, chronoamperometry, ultraviolete-visible spectroscopy, scanning electron microscopy and X-ray diffractrometry.
Resumo:
This work focuses in optimizing setup for obtaining TiO2 thin films by polymeric precursor route due to its advantages on stoichiometric and morphological control. Precursor stoichiometry, synthesis pH, solids concentration and rotation speed at deposition were optimized evaluating thin films morphology and thickness. Thermogravimetry and RMN were applied for precursor's characterization and AFM, XRD and ellipsometry for thin films evaluation. Results showed successful attainment of homogeneous nanocrystalline anatase TiO2 thin films with outstanding control over morphological characteristics, mean grain size of 17 nm, packing densities between 57 and 75%, estimated surface areas of 90 m²/g and monolayers thickness within 20 and 128 nm.
Resumo:
The main goal of this paper was to study the degradation of synthetic dyes using photoelectrocatalytic properties of particulate films of TiO2 supported on plates of titanium and stimulated by UV-Vis radiation. The dyes decolorizations were measured using spectrophotometric methods to verify which the conditions on Ti/TiO2 electrode was the best for the photoelectrodegradation of them. The results showed that decolorization rates were higher than 90% during a period of 270 min. FT-IR spectroscopy showed that intermediate substances were formed after the decolorization and N=N group/aromatic structures were preserved independently of the specific structure of the dyes.
Resumo:
TiO2 thin films were prepared by the sol-gel method using different acids (HCl and HAc), with a parallel evaluation of the gel ageing effects on the film properties. After the thermal treatments, the resulting materials were characterized through gravimetric analysis, UV-VIS spectrophotometry (from which optical parameters such as band gap was derived), XRD, morphological surface analysis (AFM) and photocatalytic activity. The majority of the obtained thin films parameters were similar independent of the acid type and the ageing time of the gel. Nevertheless, a visible effect of the surface morphology properties on the films and their photocatalytic activity was observed.
Resumo:
We investigated the effect of adding titanium dioxide nanoparticles (TiO2) to ethylene vinyl acetate (EVA) copolymer, containing 28% vinyl acetate groups, on the crystallinity and miscibility of the copolymer. Films of EVA/TiO2 containing 0.25%-1% TiO2, relative to the total weight of EVA, were prepared from their solution. The obtained films were characterized by X-ray diffraction, low-field nuclear magnetic resonance, and differential scanning calorimetry. The addition of TiO2 to the EVA copolymer was proved to cause changes in the crystallinity and mobility of the polymer chains of EVA, due to new intermolecular interactions and nanostructure organization.
Resumo:
Structural and electronic properties of titanium dioxide (TiO2) thin films, in anatase phase, were investigated using periodic 2D calculations at density functional theory (DFT) level with B3LYP hybrid functional. The Grimme dispersion correction (DFT/B3LYP-D*) was included to better reproduce structural features. The electronic properties were discussed based on the band gap energy, and proved dependent on surface termination. Surface energies ranged from 0.80 to 2.07 J/m², with the stability orders: (101) > (100) > (112) > (110) ~ (103) > (001) >> (111), and crystal shape by Wulff construction in accordance with experimental data.
Resumo:
This article gives some basic principles of heterogeneous photocatalysis using titanium dioxide as photocatalyst and the state of art of its applications to the abatement of aqueous and atmospheric pollutants.
Resumo:
This study presents the bactericidal activity of titanium dioxide photocatalysis, using as model Escherichia coli and Pseudomonas sp. cells. It was observed that the process efficiency is related to initial cell concentration, light intensity, UV irradiation exposure time, TiO2 concentration increase. The ultimate removal efficiency was above 99.9%.
Resumo:
TiO2 immobilization on concrete was studied using mixtures with cement, varnish and resin. The UV radiation sources were a germicide UV lamp and solar light. Aqueous solutions of chloroform (CHCl3) and of phenol were prepared and recirculated over the TiO2 immobilized surfaces. The immobilized TiO2 surfaces showed better photocatalytic efficiency for phenol degradation compared to the control. For CHCl3, the presence or absence of the catalyst did not cause any significant difference to its degradation efficiency. The micrographic results showed a more homogeneous surface for TiO2 immobilized in resin and varnish.
Resumo:
The decolorization and degradation of direct red 23 azo dye have been investigated in aqueous suspension of titanium dioxide under artificial irradiation. The effects of some operational parameters such as azo dye concentration, catalyst loading, and solution pH were investigated at 30.0 ºC and optimized values were obtained. The first-order kinetic model was used to discuss the results. The UV-Vis spectra changes showed that the azo dye sample, collected after 6 h irradiation, was 98% decolorized while the residual total carbon was 97.9% degraded, indicating simultaneous photodecolorization and degradation.
Resumo:
Bisphenol A (BPA) is a monomer used in epoxy resin and polycarbonate manufacture. This molecule is considered as an endocrine disruptor that causes different diseases. The human exposition to this non biodegrable substance is increasing in the time; in particular, water is contaminated by industrial remainder flow. In this article heterogeneous photo degradation of a solution of BPA in water solution using a catalytic photo reactor with UV light and titanium dioxide (TiO2) was evaluated. High performance liquid chromatography (HPLC) was used to analyze the photo degradation of BPA solutions. The influence of titanium dioxide amount, BPA concentration, reaction temperature and the catalyst state like suspension and immobilized were also determinated. The highest elimination of BPA was 83.2%, in 240 min, beginning with 0.05 mM of BPA and 100 mg/L of TiO2 in suspension.
Resumo:
Advanced oxidative processes (AOPs) are based on chemical processes that can generate free radicals, such as hydroxyl radicals (.OH) which are strong, non-selective oxidant species that react with the vast majority of organic compounds. Nanostructured semiconductors, especially titanium dioxide (TiO2) in the anatase phase, are well-established photocatalysts for this process, which have proved to be useful in the degradation of dyes, pesticides and other contaminants. Research in different strategies for the synthesis of nanostructured semiconductors, with particular characteristic is currently a topic of interest in many studies. Thus, this paper presents a review about various synthesis strategies of nanostructured photocatalysts.