86 resultados para THYMIC MYOID CELLS
em Scielo Saúde Pública - SP
Resumo:
Intrathymic T lymphocyte differentiation proceeds from complex interactions between prothymocytes of bone marrow origin and cells of the thymic stroma, epithelial cells and "acessory" cells (macrophages and/or interdigitating cells). The present paper describes the role of the accessoty cell compartment in this intrathymic process. Acessory cells produce factors which are involved in thymocyte proliferation (interleukin 1, prostaglandins, deoxynucleosides). Cell-cell interaction between "accessory" cells and thymocytes is required for the regulation of interleukin production. Prothymocytes, the precursors of all thymocyte subsets, need the accessory cell compartment for their IL2 dependent proliferation and their differentiation. Accessory cells of the thymic stroma may be involved in the intrathymic selection process at the prothymocyte level.
Resumo:
The human T-lymphotropic virus type-1 (HTLV-1) is the cause of adult T cell leukaemias/lymphoma. Because thymic epithelial cells (TEC) express recently defined receptors for the virus, it seemed conceivable that these cells might be a target for HTLV-1 infection. We developed an in vitro co-culture system comprising HTLV-1+-infected T cells and human TECs. Infected T cells did adhere to TECs and, after 24 h, the viral proteins gp46 and p19 were observed in TECs. After incubating TECs with culture supernatants from HTLV-1+-infected T cells, we detected gp46 on TEC membranes and the HTLV-1 tax gene integrated in the TEC genome. In conclusion, the human thymic epithelium can be infected in vitro by HTLV-1, not only via cell-cell contact, but also via exposure to virus-containing medium.
Resumo:
We previously reported that alloxan-induced diabetes results in reduction in the number and reactivity of mast cells at different body sites. In this study, the influence of diabetes on thymic mast cells was investigated. Thymuses from diabetic rats showed marked alterations including shrinkage, thymocyte depletion, and increase in the extracellular matrix network, as compared to those profiles seen in normal animals. Nevertheless, we noted that the number and reactivity of mast cells remained unchanged. These findings indicate that although diabetes leads to critical alterations in the thymus, the local mast cell population is refractory to its effect. This suggests that thymic mast cells are under a different regulation as compared to those located in other tissues.
Resumo:
Developing thymocytes interact with thymic epithelial cells (TECs) through cell-cell interactions, TEC-derived secretory moieties and extracellular matrix (ECM)-mediated interactions. These physiological interactions are crucial for normal thymocyte differentiation, but can be disrupted in pathological situations. Indeed, there is severe thymic atrophy in animals acutely infected with Trypanosoma cruzi due to CD4+CD8+ thymocyte depletion secondary to caspase-mediated apoptosis, together with changes in ECM deposition and thymocyte migration. We studied an in vitro model of TEC infection by T. cruzi and found that infected TEC cultures show a reduced number of cells, which was likely associated with decreased proliferative capacity, but not with increased cell death, as demonstrated by bromodeoxyuridine and annexin-V labelling. The infected TEC cultures exhibited increased expression of fibronectin (FN), laminin (LM) and type IV collagen. Importantly, treatment with FN increased the relative number of infected cells, whereas treatment with anti-FN or anti-LM antibodies resulted in lower infection rates. Consistent with these data, we observed increased thymocyte adhesion to infected TEC cultures. Overall, these results suggest that ECM molecules, particularly FN, facilitate infection of the thymic epithelium and that the consequent enhancement of ECM expression might be associated with changes in TEC-thymocyte interactions.
Resumo:
Thymocyte differentiation is the process by which bone marrow-derived precursors enter the thymus, proliferate, rearrange the genes and express the corresponding T cell receptors, and undergo positive and/or negative selection, ultimately yielding mature T cells that will represent the so-called T cell repertoire. This process occurs in the context of cell migration, whose cellular and molecular basis is still poorly understood. Kinetic studies favor the idea that these cells leave the organ in an ordered pattern, as if they were moving on a conveyor belt. We have recently proposed that extracellular matrix glycoproteins, such as fibronectin, laminin and type IV collagen, among others, produced by non-lymphoid cells both in the cortex and in the medulla, would constitute a macromolecular arrangement allowing differentiating thymocytes to migrate. Here we discuss the participation of both molecules with adhesive and de-adhesive properties in the intrathymic T cell migration. Functional experiments demonstrated that galectin-3, a soluble ß-galactoside-binding lectin secreted by thymic microenvironmental cells, is a likely candidate for de-adhesion proteins by decreasing thymocyte interaction with the thymic microenvironment.
Resumo:
Gap junctions are intercellular channels which connect adjacent cells and allow direct exchange of molecules of low molecular weight between them. Such a communication has been described as fundamental in many systems due to its importance in coordination, proliferation and differentiation. Recently, it has been shown that gap junctional intercellular communication (GJIC) can be modulated by several extracellular soluble factors such as classical hormones, neurotransmitters, interleukins, growth factors and some paracrine substances. Herein, we discuss some aspects of the general modulation of GJIC by extracellular messenger molecules and more particularly the regulation of such communication in the thymus gland. Additionally, we discuss recent data concerning the study of different neuropeptides and hormones in the modulation of GJIC in thymic epithelial cells. We also suggest that the thymus may be viewed as a model to study the modulation of gap junction communication by different extracellular messengers involved in non-classical circuits, since this organ is under bidirectional neuroimmunoendocrine control.
Resumo:
Cell migration is a crucial event in the general process of thymocyte differentiation. The cellular interactions involved in the control of this migration are beginning to be defined. At least chemokines and extracellular matrix proteins appear to be part of the game. Cells of the thymic microenvironment produce these two groups of molecules, whereas developing thymocytes express the corresponding receptors. Moreover, although chemokines and extracellular matrix can drive thymocyte migration per se, a combined role for these molecules appears to contribute to the resulting migration patterns of thymocytes in their various stages of differentiation. The dynamics of chemokine and extracellular matrix production and degradation is not yet well understood. However, matrix metalloproteinases are likely to play a role in the breakdown of intrathymic extracellular matrix contents. Thus, the physiological migration of thymocytes should be envisioned as a resulting vector of multiple, simultaneous and/or sequential stimuli involving chemokines, adhesive and de-adhesive extracellular matrix proteins, as well as matrix metalloproteinases. Accordingly, it is conceivable that any pathological change in any of these loops may result in the alteration of normal thymocyte migration. This seems to be the case in murine infection by the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas' disease. A better knowledge of the physiological mechanisms governing thymocyte migration will provide new clues for designing therapeutic strategies targeting developing T cells.
Resumo:
Solanum glaucophyllum (Sg) [= S. malacoxylon] is a calcinogenic plant inducing "Enzootic Calcinosis" in cattle. The 1,25-dihydroxyvitamin D3, its main toxic principle, regulates bone and calcium metabolism and also exerts immunomodulatory effects. Thymocyte precursors from bone marrow-derived progenitor cells differentiate into mature T-cells. Differentiation of most T lymphocytes is characterized not only by the variable expression of CD4/CD8 receptor molecules and increased surface density of the T cell antigen receptor, but also by changes in the glycosylation pattern of cell surface glycolipids or glycoproteins. Thymocytes exert a feedback influence on thymic non-lymphoid cells. Sg-induced modifications on cattle thymus T-lymphocytes and on non-lymphoid cells were analysed. Heifers were divided into 5 groups (control, intoxicated with Sg during 15, 30 or 60 days, and probably recovered group). Histochemical, immunohistochemical, lectinhistochemical and morphometric techniques were used to characterize different cell populations of the experimental heifers. Sg-poisoned heifers showed a progressive cortical atrophy that was characterized using the peanut agglutinin (PNA) lectin that recognizes immature thymocytes. These animals also increased the amount of non-lymphoid cells per unit area detected with the Picrosirius technique, WGA and DBA lectins, and pancytokeratin and S-100 antibodies. The thymus atrophy found in intoxicated animals resembled that of the physiological aging process. A reversal effect on these changes was observed after suppression of the intoxication. These findings suggest that Sg-intoxication induces either directly, through the 1,25-dihydroxyvitamin D3 itself, or indirectly through the hypercalcemia, the observed alteration of the thymus.
Resumo:
The role of gonadal hormones in induction and, particularly, maintenance/progression of rat thymic involution, which normally starts around puberty, was reassessed by examining the effects of peripubertal orchidectomy on thymic weight and morphometric parameters at different times up to the age of 10 months. Up to 6 months post-castration both thymic weight and cellularity in orchidectomized (Cx) rats were greater than in age-matched control rats, sham Cx (Sx). The increase in thymic cellularity reflected an increase in thymocyte proliferation rate (the proportion of proliferating cells was 18.6 ± 0.7% in 2-month-old Cx (N = 5) vs 13.4 ± 0.3% (N = 5) in age-matched Sx rats) followed by reduced sensitivity to apoptotic signals (apoptotic thymocytes were 9.8 ± 0.9% in 2-month-old Cx (N = 5) vs 15.5 ± 0.3% (N = 5) age-matched Sx rats). However, 9 months post-orchidectomy, neither thymic weight and cellularity nor any of the morphometric parameters analyzed differed between Cx and control rats. The reduction of thymic cellularity in Cx rats to control values may be related to increased sensitivity of their thymocytes to apoptotic signals in culture (72.6 ± 1.2% in 10-month-old vs 9.8 ± 0.9% in 2-month-old Cx rats) followed by reduced responsiveness to proliferative stimuli (14.1 ± 0.2% in 10-month-old vs 18.6 ± 0.7% in 2-month-old Cx rats). Thus, the study indicates that the effects of peripubertal orchidectomy on thymic weight and cellularity, as well as on the main morphometric indices, are long-lasting but not permanent, i.e., that removal of the testes can only postpone but not prevent age-related organ atrophy and consequently functional deterioration of the immune system.
Resumo:
Calf serum and fetal bovine serum present great variability as to its growth promoting efficiency (GPE). As supplement of culture media to cultivate cells of animal origin they stimulate the "in vitro" multiplication and maintain cell viability. When fourteen lots of calf sera of variable GPE had the total protein contents as well as the percentages of serum fractions determined, no significant differences that could possibly explain the variability of the GPE were observed. Evaluation of the antiproteolytic activity of nineteen lots of calf serum and eighteen serum lots of younger calves showed that the former exhibited lower antiproteolytic titers (1:40 to 1:80) than the latter (1:80 to 1:160). Twelve lots of fetal bovine serum studied in parallel, showed the highest concentration of antiproteolytic factors, with titers equal to 1:320. Sera of bovine origin, but not fetal sera, are usually heat-inactivated, what was demonstrated to be responsible for the decrease of the antiproteolytic activity of 75% of the lots tested. This could explain the inability of certain heat-inactivated sera in promoting multiplication of some cells "in vitro", as verified with primary monkey kidney cells. The results obtained in this study indicated the convenience of submiting each lot of serum to be introduced in cell culture to previous determination of its characteristics, such as growth promoting efficiency, antiproteolytic activity and also toxicity, absence of extraneous agents, etc., in order to minimize the possibility of using serum lots of questionable quality, thus preventing not only the loss of cell lines, but also undesirable and sometimes expensive delays.
Resumo:
Intravenous injection of scorpion toxin (Tityus serrulatus) in normal and Trypanosoma cruzi infected rats did not cause ultrastructural morphologic changes on enterochromaffin-like (ECL) cells of the stomach, although it induced a significant increase of the gastric secretion. Our data seem to indicate that gastric ECL cells structure is not affected by stimulation with scorpion toxin or by acute infection with T. cruzi in the rat.
Resumo:
Four rabies antigen batches were produced from virus suspensions resulting from BHK21 cells adhered to microcarriers (Cytodex 1), inoculated and cultured in a bioreactor. In parallel the methodology of production of rabies virus through cultures of BHK21 cells in monolayers in bottles was used. The results obtained showed that infecting titles were 106.69 DL50/mL and 107.28 DL50/mL for suspensions cultured in bottles and in the bioreactor, respectively. The viral suspension volumes collected were on average 11,900 per batch from the bioreactor and 800mL per bottle. Ten horses were immunized with the antigen produced in the bioreactor. The means of antirabies antibody titers found were 240 and 212 IU/mL after the initial and the first booster doses, respectively. Rabies antigen with satisfactory infecting titers can be obtained on a large scale by culturing in a bioreactor inoculated BHK21 cells adhered to microcarriers.
Resumo:
It has been reported that production of IL-2 and IFN-g, known as T-helper type 1 cytokines, by peripheral mononuclear cells (PBMC) decreases with progression of HIV infection. In contrast, IL-4 and IL-10 production, Th2 cytokine profile, increases with HIV disease progression. PBMC were evaluated from 55 HIV-infected subjects from Divisão de Imunologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, to "in vitro" cytokines production after 24 hours of stimulation with PHA. Low levels of IL-4 production in both HIV- infected patients and normal subjects, were detected. The patients with CD4+ T cell counts <200 showed a significant decrease of IL-2 and IFN-g production compared to controls. Patients with higher counts of CD4+ T cells (either between 200-500 or >500 cells/mm3) also showed decreased production of IL-2 that was not statistically significant. There was a correlation between IL-2 and IFN-g release with CD4+ T cells counts. HIV-1-infected individuals with CD4+ T cells >500 cells/mm3 showed increased levels of IL-2 and IFN-g, than individuals with CD4+ T cells <500 cells/mm3. In conclusion, we observed a decline of IL-2 and IFN-g production at advanced HIV disease. IL-4 production was not affected during HIV infection. Taken together, these findings suggest that the cytokine profile might be influenced by the HIV infection rather than the cause of disease progression.