4 resultados para THIOUREA
em Scielo Saúde Pública - SP
Resumo:
In this paper, we describe a practical route for the synthesis of Biginelli compounds using In(OTf)3. To study the generality of this catalyst, several examples using aromatic aldehydes, 1,3-dicarbonyl compounds, urea, and thiourea were investigated. The present procedure provides an efficient modification of the classical Biginelli reaction, namely short reaction times and simple work-up, that not only preserves the simplicity of the original protocol but also produces excellent yields of 3,4-dihydropyridin-2(1H)-ones. Thiourea was used with similar success to provide the corresponding 3,4-dihydropyridin-2(1H)-thiones. In this case, the (+/-)-monastrol, antimitotic agent, was obtained in 92% yield and new thio analogues were synthesized.
Reações de organocatálise com aminas quirais: aspectos mecanísticos e aplicações em síntese orgânica
Resumo:
The philosophy of organocatalysis is based on the utilization of organic compounds to catalyze organic transformations without the intervention of metals. This area has attracted much attention of the synthetic chemistry community on the last years, which can be confirmed by the explosion of published papers dealing with this subject. Phosphorus compounds, urea and thiourea derivatives, alkaloids, guanidine derivatives, for example, have already been used as organocatalysts. In this review we have focused on the use of chiral amines as organocatalyst. We have also chosen some outstanding examples to demonstrate the potentiality of this strategy in the synthesis of natural products and biologically active compounds.
Resumo:
The aim of this study was to examine the dormancy behavior of Euphorbia dracunculoides and Astragalus spp., weeds of arid chickpea. The dormancy breaking treatments were: Gibberalic acid (GA3) and Thiourea each at 50, 100, 150, 200, 250, and 300 ppm and Potassium nitrate (KNO3) at 5,000, 10,000, 15,000, 20,000, 25,000, and 30,000 ppm (24 h soaking). Germination (G) percentage and germination energy (GE) of E. dracunculoides was maximum (89 and 22, respectively) at 250 ppm concentration of GA3 and 81.50 and 11.50 at 15000 ppm concentration of KNO3. Thiourea at 250 and 300 ppm resulted in maximum G percentage (51) and GE (25.50) of E. dracunculoides, whereas the G percentage and GE of Astragalus spp. were maximum (28 and 19, respectively) at the lowest concentration of GA3 (50 ppm). On the other hand, 5000 ppm and 150 ppm concentration of KNO3 and Thiourea showed maximum GE (19.5) and G percentage (28) of Astragalus spp., respectively. Overall, effective dormancy breaking chemical against E. dracunculoides was GA3 (250 ppm) while in Astragalus spp. none of chemicals showed very impressive results. These results showed that both weeds' seeds have dormancy in their habit. Hot water treatment and the above mentioned chemicals (best concentrations) when used with 4, 8, and 12 hours soaking showed ineffective results.
Resumo:
ABSTRACT Understanding the mechanisms involved in releasing seed dormancy is crucial for effective plant management and renewal of species in the arid zone. Zaleya pentandra is an emerging invasive weed of the arid areas of Pakistan. We investigated the effects of different dormancy breaking treatments on the germination of Z. pentandra seeds. Seeds were treated with hot water (by placing them in boiling water for 5, 15, 30, 60, 90, 120, and 150 min), dry heat (by placing them in a preheated oven at 70 oC for 1, 2, and 4 hours; at 70 oC for 1, 2, 3, and 4 days, and at 200 oC for 5, 10, 15, 30, and 45 min) and stratification (by placing them at 2-5 ºC in a refrigerator for 5, 10, 30, and 60 min; for 3, 6, and 12 hours, and for 1, 2, 4, 8, 15, and 30 days). Seeds also were soaked in thiourea ([(NH2)2CS] (0, 2,500, 5,000, 7,500, and 10,000 mg L-1 for 24 h at 30 oC) and in KNO3 (0, 10,000, 20,000, 30,000, 40,000, 50,000, and 60,000 mg L-1 for 24 h at 30 oC). Additionally, seeds were scarified with HCl (for 3, 6, 9, 12, 15, 18, and 21 h), HNO3 (for 3, 6, 9, 12, 15, 18, and 21 h), and H2SO4 (for 20, 40, 60, 80, 100, and 120 min at 30 oC) and also mechanically scarified with sandpaper. Zaleya pentandra seeds showed typical signs of hard seed coat dormancy. Mechanical scarification and acid treatments promoted seed germination to a varying degree. Seed scarification with HNO3 for 12 to 18 h as well as with HCl for 12 h and 15 h was efficient in breaking dormancy of Z. pentandra seeds, providing germination up to 92.5%. Seed scarification with H2SO4 from 20 to 120 min showed little effect, whereas hot water, dry heat, stratification and various concentrations of thiourea and KNO3 were ineffective in breaking Z. pentandra seed dormancy.