4 resultados para THIN POLYMER-FILMS
em Scielo Saúde Pública - SP
Resumo:
In this work we discuss the aspects related to the phenomenon of mass transport in thin electroactive polymer films. Such phenomenon must be considered because the properties and consequent applications of these materials largely depend on the movement of charge carriers, i.e. ions, electrons or holes. The most recent majority of the techniques, methods and theoretical models used in this type of study are gathered and discussed, providing an easy and critical way for choosing the methodology for an investigation.
Resumo:
Little is known about the barrier properties of polymer films during high pressure processing of prepackaged foods. In order to learn more about this, we examined the influence of high hydrostatic pressure on the permeation of raspberry ketone (dissolved in ethanol/water) through polyamide-6 films at temperatures between 20 and 60ºC. Permeation was lowered by increasing pressure at all temperatures. At 23°C, the increasing pressure sequence 0.1, 50, 100, 150, and 200 MPa correlated with the decreasing permeation coefficients P/(10(9) cm² s-1) of 6.2, 3.8, 3.0, 2.2, and 1.6. Analysis of the permeation kinetics indicated that this effect was due to a reduced diffusion coefficient. Pressure and temperature acted antagonistically to each other. The decrease in permeation at 200 MPa was compensated for by a temperature increase of 20ºC. After release of pressure, the former permeation coefficients were recovered, which suggests that this `pressure effect' is reversible. Taken together, our data revealed no detrimental effects of high hydrostatic pressure on the barrier properties of polymer films.
Use of thin films obtained by plasma polymerization for grain protection and germination enhancement
Resumo:
In this work, preliminary results of the use of hydrophobic thin films obtained by plasma deposition to protect grains and seeds are presented: grains coated by the films did not present biological degradation when stored in a saturated water vapor environment, but had their germination accelerated in the presence of water. A model that explains the difference of behavior of the films when exposed to water in vapor form or in liquid form, based on the formation of microchannels within the film that lead to water uptake in seeds, is presented. The model was successfully tested using quartz crystal measurements, which showed that the microchannels within the films can favor the adsorption and permeation of water when the films are immersed in water.
Resumo:
The aim of this work is the production and characterization of plasma polymerized acetaldehyde thin films. These films show highly polar species, are hydrophilic, organophilic and easily adsorb organic reactants with CO radicals but only allow permeation of reactants with OH radicals. The good step coverage of films deposited on aluminum trenches is useful for sensor development. Films deposited on hydrophobic substrates may result in a discontinued layer, which allows the use of preconcentration in sample pretreatment. Deposition on microchannels showed the possibility of chromatographic columns and/or retention system production to selectively detect or remove organic compounds from gas flows.