20 resultados para Systems dynamics

em Scielo Saúde Pública - SP


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In agricultural systems the N-NH4+ and N-NO3- contents is significantly affected by soil management. This study investigated the dynamics of inorganic nitrogen (N; NH4+ and NO3-) in an experimental evaluation of soil management systems (SMSs) adopted in 1988 at the experimental station of the ABC Foundation in Ponta Grossa, in the Central South region of the State of Paraná. The objective of this study was to evaluate the changes in N-NH4+ and N-NO3- flux in the surface layer of a Red Latosol arising from SMSs over a 12-month period. The experiment was arranged in a completely randomized block design in split plots, in three replications. The plots consisted of the following SMSs: 1) conventional tillage (CT); 2) minimum tillage (MT); 3) no-tillage with chisel plow every three years (NT CH); and 4) continuous no-tillage (CNT). To evaluate the dynamics of inorganic N, the subplots represented samplings (11 sampling times, T1 - T11). The ammonium N (N-NH4+) and nitric N (N-NO3-) contents were higher in systems with reduced tillage (MT and NT CH) and without tillage (CNT) than in the CT system. In the period from October 2003 to February 2004, the N-NH4+ was higher than the N-NO3- soil content. Conversely, in the period from May 2004 to July 2004, the N-NO3- was higher than the N-NH4+ content. The greatest fluctuation in the N-NH4+ and N-NO3- contents occurred in the 0-2.5 cm layer, and the highest peak in the N-NH4+ and N-NO3- concentrations occurred after the surface application of N. Both N-NH4+ and N-NO3- were strongly correlated with the soil organic C content, which indicated that these properties vary together in the system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nitrogen is the main limiting factor in crop productivity and thereby soil management systems may change the mineralization and nitrification rates. In an experiment on soil management systems implemented in 1988 at the experimental station Fundação ABC, Ponta Grossa, in the central South region of the State of Paraná, inorganic N dynamics were examined to find a soil management strategy with a view to a sustainable environment. The objective of this study was to calculate the net mineralization and nitrification rates of soil N and the correlation with soil pH under management systems. Randomized complete block design was used, in split plots, in three replications. The following soil management systems (SMSs) were adopted in the plots: 1) conventional tillage (CT); 2) minimum tillage (MT); 3) no-tillage with chisel plow every three years (NT CH); and 4) continuous no-tillage (CNT). To evaluate the dynamics of inorganic N, samples were collected from sub-plots at different times (11 sampling times - T1 to T11). In the CNT and NT CH, the net mineralization rates were higher in the MT and CT systems in the 0-2.5 cm soil layer, while the nitrification rate was higher in the 2.5-5 cm layer. Soon after implementing the white oat management, the mineralization and nitrification rates in all soil layers were higher in the MT and CT systems. In the period of soybean development, in the 0-2.5 and 2.5-5 cm soil layers, the mineralization and nitrification rates were higher in the CNT and NT CH than in the MT and CT systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Vegetable production in conservation tillage has increased in Brazil, with positive effects on the soil quality. Since management systems alter the quantity and quality of organic matter, this study evaluated the influence of different management systems and cover crops on the organic matter dynamics of a dystrophic Red Latosol under vegetables. The treatments consisted of the combination of three soil tillage systems: no-tillage (NT), reduced tillage (RT) and conventional tillage (CT) and of two cover crops: maize monoculture and maize-mucuna intercrop. Vegetables were grown in the winter and the cover crops in the summer for straw production. The experiment was arranged in a randomized block design with four replications. Soil samples were collected between the crop rows in three layers (0.0-0.05, 0.05-0.10, and 0.10-0.30 m) twice: in October, before planting cover crops for straw, and in July, during vegetable cultivation. The total organic carbon (TOC), microbial biomass carbon (MBC), oxidizable fractions, and the carbon fractions fulvic acid (C FA), humic acid (C HA) and humin (C HUM) were determined. The main changes in these properties occurred in the upper layers (0.0-0.05 and 0.05-0.10 m) where, in general, TOC levels were highest in NT with maize straw. The MBC levels were lowest in CT systems, indicating sensitivity to soil disturbance. Under mucuna, the levels of C HA were lower in RT than NT systems, while the C FA levels were lower in RT than CT. For vegetable production, the C HUM values were lowest in the 0.05-0.10 m layer under CT. With regard to the oxidizable fractions, the tillage systems differed only in the most labile C fractions, with higher levels in NT than CT in the 0.0-0.05 m layer in both summer and winter, with no differences between these systems in the other layers. The cabbage yield was not influenced by the soil management system, but benefited from the mulch production of the preceding maize-mucuna intercrop as cover plant.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The increasing complexity of controller systems, applied in modern passenger cars, requires adequate simulation tools. The toolset FASIM_C++, described in the following, uses complex vehicle models in three-dimensional vehicle dynamics simulation. The structure of the implemented dynamic models and the generation of the equations of motion applying the method of kinematic differentials is explained briefly. After a short introduction in methods of event handling, several vehicle models and applications like controller development, roll-over simulation and real-time-simulation are explained. Finally some simulation results are presented.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The dynamics of flexible systems, such as robot manipulators , mechanical chains or multibody systems in general, is becoming increasingly important in engineering. This article deals with some nonlinearities that arise in the study of dynamics and control of multibody systems in connection to large rotations. Specifically, a numerical scheme that adresses the conservation of fundamental constants is presented in order to analyse the control-structure interaction problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: This study aimed to identify airborne fungi in São Luis, Maranhão, Brazil, to determine the prevalent genera and to correlate these genera with the area and season. Methods: In total, 1,510 colony-forming units (CFUs) of airborne fungi were isolated from the north, south, east and west sides and from the center of the city from January to December 2007. The samples were collected on Petri dishes that were exposed to the fungi by the gravitational method. Results: Twenty genera of fungi were isolated; the most common were Aspergillus (33.5%), Penicillium (18.8%), Cladosporium (14.2%), Curvularia (10.6%) and Fusarium (7.6%). The CFUs of the fungi were statistically significant (p < 0.0001). Fungal biological diversity was present all year, without any large seasonal variations but with slight increases in May, August and September. Conclusions: The fungal genera identified in this study were correlated with natural systems and could be useful when evaluating the impact of environmental changes on the region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Long term applications of leguminous green mulch could increase mineralizable nitrogen (N) beneath cupuaçu trees produced on the infertile acidic Ultisols and Oxisols of the Amazon Basin. However, low quality standing cupuaçu litter could interfere with green mulch N release and soil N mineralization. This study compared mineral N, total N, and microbial biomass N beneath cupuaçu trees grown in two different agroforestry systems, north of Manaus, Brazil, following seven years of different green mulch application rates. To test for net interactions between green mulch and cupuaçu litter, dried gliricidia and inga leaves were mixed with senescent cupuaçu leaves, surface applied to an Oxisol soil, and incubated in a greenhouse for 162 days. Leaf decomposition, N release and soil N mineralization were periodically measured in the mixed species litter treatments and compared to single species applications. The effect of legume biomass and cupuaçu litter on soil mineral N was additive implying that recommendations for green mulch applications to cupuaçu trees can be based on N dynamics of individual green mulch species. Results demonstrated that residue quality, not quantity, was the dominant factor affecting the rate of N release from leaves and soil N mineralization in a controlled environment. In the field, complex N cycling and other factors, including soil fauna, roots, and microclimatic effects, had a stronger influence on available soil N than residue quality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pirarucu (Arapaima gigas) has been of the most important natural fishing resources of the Amazon region. Due to its economic importance, and the necessity to preserve the species hand, field research concerning the habits and behavior of the pirarucu has been increasing for the last 20 years. The aim of this paper is to present a mathematical model for the pirarucu population dynamics considering the species peculiarities, particularly the male parental care over the offspring. The solution of the dynamical systems indicates three possible equilibrium points for the population. The first corresponds to extinction; the third corresponds to a stable population close to the environmental carrying capacity. The second corresponds to an unstable equilibrium located between extinction and full use of the carrying capacity. It is shown that lack of males’ parental care closes the gap between the point corresponding to the unstable equilibrium and the point of stable non-trivial equilibrium. If guarding failure reaches a critical point the two points coincide and the population tends irreversibly to extinction. If some event tends to destabilize the population equilibrium, as for instance inadequate parental care, the model responds in such a way as to restore the trajectory towards the stable equilibrium point avoiding the route to extinction. The parameters introduced to solve the system of equations are partially derived from limited but reliable field data collected at the Mamirauá Sustainable Development Reserve (MSDR) in the Brazilian Amazonian Region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The new techniques proposed for agriculture in the Amazon region include rotational fallow systems enriched with leguminous trees and the replacement of biomass burning by mulching. Decomposition and nutrient release from mulch were studied using fine-mesh litterbags with five different leguminous species and the natural fallow vegetation as control. Samples from each treatment were analyzed for total C, N, P, K, Ca, Mg, lignin, cellulose content and soluble polyphenol at different sampling times over the course of one year. The decomposition rate constant varied with species and time. Weight loss from the decomposed litter bag material after 96 days was 30.1 % for Acacia angustissima, 32.7 % for Sclerolobium paniculatum, 33.9 % for Iinga edulis and the Fallow vegetation, 45.2 % for Acacia mangium and 63.6 % for Clitoria racemosa. Immobilization of N and P was observed in all studied treatments. Nitrogen mineralization was negatively correlated with phenol, C-to-N ratio, lignin + phenol/N ratio, and phenol/phosphorus ratios and with N content in the litterbag material. After 362 days of field incubation, an average (of all treatments), 3.3 % K, 32.2 % Ca and 22.4 % Mg remained in the mulch. Results confirm that low quality and high amount of organic C as mulch application are limiting for the quantity of energy available for microorganisms and increase the nutrient immobilization for biomass decomposition, which results in competition for nutrients with the crop plants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil and fertilizer management during cultivation can affect crop productivity and profitability. Long-term experiments are therefore necessary to determine the dynamics of nutrient and root distribution as related to soil profile, as well as the effects on nutrient uptake and crop growth. An 18-year experiment was conducted at the Federal University of Rio Grande do Sul State (UFRGS), in Eldorado do Sul, Brazil, on Rhodic Paleudult soil. Black oat and vetch were planted in the winter and corn in the summer. The soil management methods were conventional, involving no-tillage and strip tillage techniques and broadcast, row-and strip-applied fertilizer placement (triple superphosphate). Available P (Mehlich-1) and root distribution were determined in soil monoliths during the corn grain filling period. Corn shoot dry matter production and P accumulation during the 2006/2007 growing season were determined and the efficiency of P utilization calculated. Regardless of the degree of soil mobilization, P and roots were accumulated in the fertilized zone with time, mainly in the surface layer (0-10 cm). Root distribution followed P distribution for all tillage systems and fertilizer treatments. Under no-tillage, independent of the fertilizer placement, the corn plants developed more roots than in the other tillage systems. Although soil tillage systems and fertilizer treatments affected P and root distribution throughout the soil profile, as well as P absorption and corn growth, the efficiency of P utilization was not affected.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil organic matter can be analyzed on the basis of the different fractions. Changes in the levels of organic matter, caused by land use, can be better understood by alterations in the different compartments. The aim of this study was to evaluate the effect of different management systems on the labile and stable organic matter of a dystrophic Red Latosol (Oxisol). The following properties were determined: total organic C and total N (TOC and TN), particulate organic C and particulate N (POC and PN), organic C and N mineral-associated (MOC and NM) and particulate organic C associated with aggregate classes (POCA). Eight treatments were used: seven with soil management systems and one with native Cerrado as a reference. The experiment was designed to study the dynamics of systems of tillage and crop rotation, alternating in time and space. The experimental design was a randomized block design with three replications. The soil samples were collected from five depths: 0-5, 5-10, 10-20, 20-30 and 30-40 cm. Changes in organic C by land use occurred mainly in the fraction of particulate organic matter (> 53 mm). Proper management of grazing promoted increased levels of particulate organic matter by association with larger aggregates (2-8 mm), demonstrating the importance of the formation of this aggregate class for C protection in pasture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil organic matter depletion caused by agricultural management systems have been identified as a critical problem in most tropical soils. The application of organic residues from agro-industrial activities can ameliorate this problem by increasing soil organic matter quality and quantity. Humic substances play an important role in soil conservation but the dynamics of their transformations is still poorly understood. This study evaluated the effect of compost application to two contrasting tropical soils (Inceptisol and Oxisol) for two years. Soil samples were incubated with compost consisting of sugarcane filter cake, a residue from the sugar industry, at 0, 40, 80, and 120 Mg ha-1. Filter cake compost changed the humic matter dynamics in both content and quality, affecting the soil mineralogical composition. It was observed that carbon mineralization was faster in the illite-containing Inceptisol, whereas humic acids were preserved for a longer period in the Oxisol. In both soils, compost application increased fulvic acid contents, favoring the formation of small hydrophilic molecules. A decrease in fluorescence intensity according to the incubation time was observed in the humic acids extracted from amended soils, revealing important chemical changes in this otherwise stable C pool.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Brachiaria species, particularly B. humidicola, can synthesize and release compounds from their roots that inhibit nitrification, which can lead to changes in soil nitrogen (N) dynamics, mainly in N-poor soils. This may be important in crop-livestock integration systems, where brachiarias are grown together with or in rotation with grain crops. The objective of the present study was to determine whether this holds true in N-rich environments and if other Brachiaria species have the same effect. The soil N dynamics were evaluated after the desiccation of the species B. brizantha, B. decumbens, B. humidicola, and B. ruziziensis, which are widely cultivated in Brazil. The plants were grown in pots with a dystroferric Red Latosol in a greenhouse. Sixty days after sowing, the plants were desiccated using glyphosate herbicide. The plants and soil were analyzed on the day of desiccation and 7, 14, 21 and 28 days after desiccation. The rhizosphere soil of the grasses contained higher levels of organic matter, total N and ammonium than the non-rhizosphere soil. The pH was lowest in the rhizosphere of B. humidicola, which may indicate that this species inhibits the nitrification process. However, variations in the soil ammonium and nitrate levels were not sufficient to confirm the suppressive effect of B. humidicola. The same was observed for B. brizantha, B. decumbens and B. ruziziensis, thereby demonstrating that, where N is abundant, none of the brachiarias studied has a significant effect on the nitrification process in soil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tropical grasslands under lowland soils are generally underutilized and the litter of forage legumes may be used to recover these degraded pastures. The objective of this work was to study the dynamics of litter decomposition of Arachis pintoi (pinto peanut), Hyparrhenia rufa (thatching grass) and a mixture of both species in a lowland soil. These treatments were analyzed in three areas: grass monoculture, legume monoculture and legume intercropped with the grass during the dry and wet seasons. Litter bags containing the legume, grass or a mixture of both species were incubated to estimate the decomposition rate and microorganism colonization. Decomposition constants (K) and litter half-lives (T1/2) were estimated by an exponential model whereas number of microorganisms in specific media were determined by plate dilution. The decomposition rate, release of nutrients and microorganisms number, especially bacteria, increased when pinto peanut was added to thatching grass, influenced by favorable lignin/N and C/N ratios in legume litter. When pinto peanut litter was incubated in the grass plots, 50% N and P was released within about 135 days in the dry season and in the wet season, the equivalent release occurred within 20 days. These results indicate that A. pintoi has a great potential for nutrient recycling via litter and can be used to recover degraded areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the main complexities in the simulation of the nonlinear dynamics of rigid bodies consists in describing properly the finite rotations that they may undergo. It is well known that, to avoid singularities in the representation of the SO(3) rotation group, at least four parameters must be used. However, it is computationally expensive to use a four-parameters representation since, as only three of the parameters are independent, one needs to introduce constraint equations in the model, leading to differential-algebraic equations instead of ordinary differential ones. Three-parameter representations are numerically more efficient. Therefore, the objective of this paper is to evaluate numerically the influence of the parametrization and its singularities on the simulation of the dynamics of a rigid body. This is done through the analysis of a heavy top with a fixed point, using two three-parameter systems, Euler's angles and rotation vector. Theoretical results were used to guide the numerical simulation and to assure that all possible cases were analyzed. The two parametrizations were compared using several integrators. The results show that Euler's angles lead to faster integration compared to the rotation vector. An Euler's angles singular case, where representation approaches a theoretical singular point, was analyzed in detail. It is shown that on the contrary of what may be expected, 1) the numerical integration is very efficient, even more than for any other case, and 2) in spite of the uncertainty on the Euler's angles themselves, the body motion is well represented.