88 resultados para Sulfonic acid
em Scielo Saúde Pública - SP
Resumo:
In this work, we report the Biginelli-type reaction between various aldehydes, acetophenones and urea systems in the presence of sulfonic acid functionalized silica (SBA-Pr-SO3H) under solvent-free conditions, which led to 4,6-diarylpyrimidin-2(1H)-ones derivatives. SBA-Pr-SO3H with a pore size of 6 nm was found to be an efficient heterogeneous solid acid catalyst for this reaction which led to high product yields, was environmentally benign with short reaction times and easy handling.
Resumo:
INTRODUCTION: The capacity to overcome the oxidative stress imposed by phagocytes seems to be critical for Candida species to cause invasive candidiasis. METHODS: To better characterize the oxidative stress response (OSR) of 8 clinically relevant Candida sp., glutathione, a vital component of the intracellular redox balance, was measured using the 5,5'-dithiobis-(2-nitrobenzoic acid (DTNB)-glutathione disulfide (GSSG) reductase reconversion method; the total antioxidant capacity (TAC) was measured using a modified method based on the decolorization of the 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic) acid radical cation (ABTS*+). Both methods were used with cellular Candida sp. extracts treated or not with hydrogen peroxide (0.5 mM). RESULTS: Oxidative stress induced by hydrogen peroxide clearly reduced intracellular glutathione levels. This depletion was stronger in Candida albicans and the levels of glutathione in untreated cells were also higher in this species. The TAC demonstrated intra-specific variation. CONCLUSIONS: Glutathione levels did not correlate with the measured TAC values, despite this being the most important non-enzymatic intracellular antioxidant molecule. The results indicate that the isolated measurement of TAC does not give a clear picture of the ability of a given Candida sp. to respond to oxidative stress.
Resumo:
O consumo de frutos e suas polpas tem sido muito recomendado por seu valor nutricional, alto teor de fibras, vitamina C e carotenoides. Trabalhos recentes têm apontado esses alimentos como fontes de compostos fenólicos com ação antioxidante, portanto sequestradores de radicais livres, com ação protetora contra o surgimento e/ou desenvolvimento de processos degenerativos que conduzem a doenças crônicas não transmissíveis. Devido à crescente comercialização e consumo de polpas de frutas no Brasil, especialmente na cidade de Teresina-Piauí, este trabalho selecionou um grupo de polpas de frutos de elevado consumo local para avaliação do teor de fenólicos totais e da atividade antioxidante in vitro pelo método de captura de radicais livres: DPPH (radical 1,1-diphenil-2-picrilhydrazil) e ABTS (radical 2,2'azinobis(3-ethylbenzthiazoline-6-sulfonic acid)). Os frutos selecionados foram: Acerola (Malpighia emarginata DC.), Bacuri (Platonia insignis Mart.), Cajá (Spondias mombin L.), Caju (Anacardium occidentale), Goiaba(Psidium guajava) e Tamarindo (Tamarindus indica L.). Os teores de fenólicos totais encontrados nas polpascongeladas destes frutos exibiram quantidades relevantes de polifenóis, destacando-se a polpa de acerola com 835,25 ± 32,44 e 449,63 ± 10,24 mg /100g nos extratos aquosos e hidroalcoólicos, respectivamente, seguido pela polpa de caju com 201,61 ± 19,15 e 165,07 ± 4,10 mg /100g. As polpas de bacuri e tamarindo foram as que apresentaram os menores teores de fenólicos totais. Com relação à atividade antioxidante in vitro, os melhores resultados foram encontrados para os extratos aquosos e hidroalcoólicos das polpas de acerola, caju e goiaba. A capacidade antioxidante destas polpas (EC50 em µg/mL) variou de 24,42 a 413,36 e de 1,74 a 259,18 para os extratos aquosos e hidroalcoólicos, respectivamente. Utilizando o radical ABTS, a atividade antioxidante para essas mesmas polpas de frutas apresentou valores TEAC que variaram de 3,69 ± 0,209 a 0,052 ± 0,013 (mM TROLOX/g de polpa). Foi observado existir uma correlação direta entre a quantidade de fenólicos totais e a atividade antioxidante nas polpas avaliadas.
Resumo:
In this work we take advantage of the polyelectrolyte character of some Brazilian native gums to fabricate electrically conductive, nanostructured films. The gums Sterculia urens, (caraia), Sterculia striata (chicha) or Anadenanthera macrocarpa Benth were assembled in conjunction with poly(o-methoxyaniline) (POMA) in the form of layered nanostructured films using the layer-by-layer (LbL) technique. All the LbL films displayed a well-defined electroactivity, as confirmed via cyclic voltammetry. In comparison to POMA LbL films fabricated with conventional polyelectrolytes (viz. poly(vinyl sulfonic acid)-PVS), the presence of the gums in the LbL films increased remarkably the electrochemical stability of the films.
Resumo:
The natural quinones lapachol, α-lapachone and β-lapachone, and the synthetic derivative β-lapachone-3-sulfonic-acid were assayed for inhibition of fungal growth (Fusarium oxysporum) and germination of lettuce seeds (Lactuca sativa L.). β-Lapachone has the strongest activity as a germination inhibitor and lapachol shows no effect. β-Lapachone, followed by lapachol, are the most active in reducing fungal growth.
Resumo:
Infusions of yerba mate obtained at different stages of industrialization were evaluated to determine the bioavailable fraction of Al. Adsorptive Cathodic Stripping Voltammetry using DASA (complexing agent) was applied to determine the labile fraction of Al at pH 5.0 and pH 8.0 for the total fraction of dissolved Al. The results indicate that on average 60% of Al is complexed with organic compounds, minimizing their bioavailability; however, the labile fraction exceeds by up to 4 times the maximum weekly intake recommended by the World Health Organization.
Resumo:
Sulfonic acid functionalized SBA-15 nanoporous material (SBA-Pr-SO3H) with a large pore size of 6 nm, a high surface area, high selectivity, and excellent chemical and thermal stability was applied as an efficient heterogeneous nanoporous acid catalyst in the reaction of isatin with pyrazolones under mild reaction conditions. A novel class of symmetrical spiro[indoline-3,4'-pyrano[2,3-c:6,5-c']dipyrazol]-2-one derivatives was successfully obtained in high yields. Comparison of these results with those reported in the literature shows that the current method is efficient, and results in better reaction times and yields of the desired products. Other advantages of this new method are its operational simplicity, easy work-up procedure, and the use of SBA-Pr-SO3H as a reusable and environmentally benign nanoreactor, such that the reaction proceeds easily in its nanopores. We also tested the antimicrobial activity of the prepared compounds using the disc diffusion method, and some of the synthesized compounds exhibited the best results against B. subtilis and S. aureus.
Resumo:
Two series of alkanediyl-a,w-bis (dimethylalkylammonium bromide (n-2-n and n-6-n; n=8, 10,12, and 16) have been synthesized and their micelles properties studied in aqueous solution using pyrene, pyrenecarboxaldehyde (PCA) and 1,8 anilinonaphtalene sulfonic acid sodium salt (ANS) as fluorescent probes. The micelles from these surfactants have been characterized on the basis of the information provided by micelle-solubilized fluorescent probes. The obtained results indicated that the surfactant concentration at which a marked decrease in l max parameter of pyrenecarboxaldehyde (PCA) occurs corresponds to the CMC determined by conductimetric measurements. Changes in the emission spectra of ANS and PCA observed in the submicellar range for both surfactants series (n-2-n and n-6-n) were interpreted as formation of pre-aggregates. It was found that the dimeric surfactants with long spacer (s= 6) form more hydrated aggregates when compared with those formed by the n-2-n and CnTAB surfactants series. This was attributed to a more difficult packing of n-6-n surfactant molecules to form micelles.
Resumo:
The gut mucosa is a major site of contact with antigens from food and microbiota. Usually, these daily contacts with natural antigens do not result in inflammatory reactions; instead they result in a state of systemic hyporesponsiveness named oral tolerance. Inflammatory bowel diseases (IBD) are associated with the breakdown of the immunoregulatory mechanisms that maintain oral tolerance. Several animal models of IBD/colitis are available. In mice, these include targeted disruptions of the genes encoding cytokines, T cell subsets or signaling proteins. Colitis can also be induced by intrarectal administration of chemical substances such as 2,4,6-trinitrobenzene sulfonic acid in 50% ethanol. We report here a novel model of colitis induced by intrarectal administration of 50% ethanol alone. Ethanol-treated mice develop an inflammatory reaction in the colon characterized by an intense inflammatory infiltrate in the mucosa and submucosa of the large intestine. They also present up-regulation of both interferon gamma (IFN-gamma) and interleukin-4 (IL-4) production by cecal lymph node and splenic cells. These results suggest a mixed type of inflammation as the substrate of the colitis. Interestingly, cells from mesenteric lymph nodes of ethanol-treated mice present an increase in IFN-gamma production and a decrease in IL-4 production indicating that the cytokine balance is altered throughout the gut mucosa. Moreover, induction of oral tolerance to ovalbumin is abolished in these animals, strongly suggesting that ethanol-induced colitis interferes with immunoregulatory mechanisms in the intestinal mucosa. This novel model of colitis resembles human IBD. It is easy to reproduce and may help us to understand the mechanisms involved in IBD pathogenesis.
Resumo:
A novel, rapid and cost-effective trifluoperazine dihydrochloride (TFPH) decolorization assay is described for the screening of antioxidant activity. A chromogenic reaction between TFPH and potassium persulfate at low pH produces an orange-red radical cation with maximum absorption at 502 nm in its first-order derivative spectrum. TFPH was dissolved in distilled water to give a 100 mM solution. The TFPH radical cation solution was made by reacting 0.5 mL of the solution with K2S2O8 (final concentration: 0.1 mM) and diluting to 100 mL with 4 M H2SO4 solution. A linear inhibition of color production was observed with linearly increasing amounts of antioxidants, with correlation coefficients (R²) ranging from 0.999 to 0.983. The antioxidant capacity of standard solutions of an antioxidant was evaluated by comparing with the inhibition curve using Trolox as the standard. Comparison of antioxidant capacity determined with this newly developed TFPH assay and with the well-known 2,2'-azinobis-[3-ethylbenzthiazoline-6-sulfonic acid] (ABTS)-persulfate decolorization assay indicated the efficacy and sensitivity of the procedure. The proposed assay is less expensive (costs about US$4 per 100 assays) and requires only 20 min for preparation of radical cation solution in comparison with ABTS assay, in which almost 12-16 h are required for preparation of a stable ABTS radical cation solution. The present assay has the advantage over ABTS assay that it can be used to measure the antioxidant activity of the samples, which are naturally found at a pH as low as 1, because the radical cation itself has been stabilized at low pH.
Resumo:
Efonidipine hydrochloride is an antihypertensive and antianginal agent with fewer side effects and is better tolerated in the treatment of hypertension with renal impairment. Its interaction with bovine serum albumin (BSA) is of great use for the understanding of the pharmacokinetic and pharmacodynamic mechanisms of the drug. The binding of efonidipine to BSA was investigated by fluorescence spectroscopy and circular dichroism. BSA fluorescence was quenched by efonidipine, due to the fact that efonidipine quenched the fluorescence of tryptophan residues mainly by the collision mode. The thermodynamic parameters ΔH0 and ΔS0 were 68.04 kJ/mol and 319.42 J·mol-1·K-1, respectively, indicating that the hydrophobic interactions played a major role. The results of circular dichroism and synchronous fluorescence measurements showed that the binding of efonidipine to BSA led to a conformational change of BSA. The fraction of occupied sites (θ) for the 8-anilino-1-naphthalein-sulfonic acid (ANS)-BSA system is 85%, whereas for the NZ-105-BSA system, it is 53%, which suggests that the interaction of ANS with BSA is stronger than that of NZ-105 with BSA. Binding studies in the presence of ANS indicated that efonidipine competed with ANS for hydrophobic sites of BSA. The effects of metal ions on the binding constant of the efonidipine-BSA complex were also investigated. The presence of metal ions Zn2+, Mg2+, Al3+, K+, and Ca2+ increased the binding constant of efonidipine_BSA complex, which may prolong the storage period of NZ-105 in blood plasma and enhance its maximum effects.
Resumo:
This study was carried out to evaluate the antioxidant capacity of the agro-industrial waste from acerola. Hydroacetone, hydroethanolic, and hydromethanolic extracts were obtained using the sequential extraction process, and they were screened for their free radical DPPH (1,1-diphenyl-2-picrilhidrazil) and ABTS+ (2,2'-azino-bis-(3-etilbenzotiazolin 6-sulfonic acid) scavenging activity and their effect on the linoleic acid peroxidation by the ferric thiocyanate method. Soybean oil with the addition of the extracts (200 ppm) was submitted to Schaal oven test (60 °C, 28 days), in which the samples were analyzed for peroxide value and conjugated dienes. Hydroethanolic and hydromethanolic extracts exhibited good DPPH scavenging activity (low value of EC50 and TEC50 and high value of AE), good ABTS scavenging capacity (1445.1 and 1145.5 µMol TEAC.g-1, respectively), and high percentage inhibition of peroxidation of linoleic acid (96.12 and 91.84%, respectively) and showed the ability to retard the formation of peroxides and conjugated dienes.
Resumo:
This study aimed to identify antioxidant peptides from caprine casein hydrolysates by papain application using MALDI-TOF mass spectrometer, and a 2² full factorial design, with 4 axial points, in order to evaluate kinetic parameters (time and pH) effects on the degree of hydrolysis as well as the antioxidant activity of Moxotó goat milk casein peptides. Degree of hydrolysis was determined by total and soluble protein ratio in casein. Antioxidant activity was measured by ABTS method with 2, 2-cation-azinobis (3-ethylbenzothiazoline-6-sulfonic acid). TROLOX was used as standard. Peptide pattern and sequence of antioxidant amino acids were obtained using MALDI-TOF/MS. The highest degree of hydrolysis (28.5%) and antioxidant activity (2329.6 mmol.L TROLOX. mg- 1 peptide) were observed in the permeate. NENLL, NPWDQVK and LLYQEPVLGPV peptides, detected in the permeate, were pointed as the responsible for antioxidant activity, suggesting their potential application as food supplement and pharmaceutical products.
Resumo:
Abstract The search for chemopreventive/chemoprotective compounds in marine organism has been extensively reported; however, the presence of these compounds in octopus has been incipiently explored. In this research, the antimutagenic, antiproliferative, and antioxidant potential of three crude extracts (methanolic, acetonic, and hexanic) from Paroctopus limaculatus was investigated. Antimutagenic activity against aflatoxin B1 (AFB1) was evaluated through the Ames test using Salmonella typhimurium tester strains TA98 and 100. Antiproliferative activity was assessed using the standard MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide) assay on M12.C3.F6 murine cell line. Antioxidant activity was assessed using the DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) methods. Hexanic extract showed the highest antimutagenic and antiproliverative activities inhibiting 80 and 43% of mutagenicity induced by AFB1 for TA98 and TA100, respectively, and showing a high antiproliferative activity at 200 and 100 µg/mL. However, when the antioxidant activity was evaluated at a concentration of 50 mg/mL, the methanolic fraction exerted inhibition of 98 and 96 % ABTS and DPPH radicals, respectively. RP-HPLC and 1H-RMN analyses suggested the presence of double bonds with extended conjugation and oxygenated compounds such as alcohols, esters, ethers or ketones. These results suggested that hexanic and methanolic extract form octopus contained compounds with chemoprotective and antioxidant properties.
Resumo:
Human serum albumin (HSA) is the most abundant protein in the intravascular compartment. It possesses a single thiol, Cys34, which constitutes ~80% of the total thiols in plasma. This thiol is able to scavenge plasma oxidants. A central intermediate in this potential antioxidant activity of human serum albumin is sulfenic acid (HSA-SOH). Work from our laboratories has demonstrated the formation of a relatively stable sulfenic acid in albumin through complementary spectrophotometric and mass spectrometric approaches. Recently, we have been able to obtain quantitative data that allowed us to measure the rate constants of sulfenic acid reactions with molecules of analytical and biological interest. Kinetic considerations led us to conclude that the most likely fate for sulfenic acid formed in the plasma environment is the reaction with low molecular weight thiols to form mixed disulfides, a reversible modification that is actually observed in ~25% of circulating albumin. Another possible fate for sulfenic acid is further oxidation to sulfinic and sulfonic acids. These irreversible modifications are also detected in the circulation. Oxidized forms of albumin are increased in different pathophysiological conditions and sulfenic acid lies in a mechanistic junction, relating oxidizing species to final thiol oxidation products.