198 resultados para Sulfate de chondroïtine
em Scielo Saúde Pública - SP
Resumo:
Among the proposed treatments to repair lesions of degenerative joint disease (DJD), chondroprotective nutraceuticals composed by glucosamine and chondroitin sulfate are a non-invasive theraphy with properties that favors the health of the cartilage. Although used in human, it is also available for veterinary use with administration in the form of nutritional supplement independent of prescription, since they have registry only in the Inspection Service, which does not require safety and efficacy testing. The lack of such tests to prove efficacy and safety of veterinary medicines required by the Ministry of Agriculture and the lack of scientific studies proving its benefits raises doubts about the efficiency of the concentrations of such active substances. In this context, the objective of this study was to evaluate the efficacy of a veterinary chondroprotective nutraceutical based on chondroitin sulfate and glucosamine in the repair of osteochondral defects in lateral femoral condyle of 48 dogs, through clinical and radiographic analysis. The animals were divided into treatment group (TG) and control group (CG), so that only the TG received the nutraceutical every 24 hours at the rate recommended by the manufacturer. The results of the four treatment times (15, 30, 60 and 90 days) showed that the chondroprotective nutraceutical, in the rate, formulation and administration at the times used, did not improve clinical signs and radiologically did not influence in the repair process of the defects, since the treated and control groups showed similar radiographic findings at the end of the treatments.
Resumo:
Sulfur in the soil occurs in two basic forms, organic and inorganic S. The organic form accounts for 95 % of S in most soils. The effectiveness of organic S to oxidate to sulfate was evaluated for total S determination in soil samples by wet (acid) and dry-ash (alkaline) oxidation methods. To evaluate the wet method and the possible use as a reference when evaluating the dry method proposed here, a reference standard from the US National Institute of Standards and Technology (NIST) was used (Montana Soil - NIST 2710). The dry-ash oxidation process with alkaline oxidizing agents is one of the simplest oxidation methods of organic S to the sulfate form and was compared with the wet process. The objective of the study was to develop a dry method that would be easy to apply and allow the complete conversion of organic S to sulfate in soil samples and later detection by turbidimetry. The effectiveness of organic S oxidation to sulfate was evaluated by means of three alkaline oxidation mixtures: NaHCO3 + Ag2O, Eschka mixture (17 % Na2CO3, 66 % MgO, and 17 % K2CO3), and NaHCO3 + CuO. The procedure to quantify the sulfate concentration was based on the reaction with barium chloride and turbidimetric detection. Sulfur quantification in the standard sample by the wet method proved adequate, precise and accurate. It should also be pointed out that no significant differences were found (95 % reliability) between the wet and dry processes (NaHCO3 and Ag2O oxidation mixture) in six different Brazilian soils. The proposed dry method can therefore be used in the preparation of soil samples for total S determination.
Resumo:
Two high performance liquid chromatography (HPLC) methods for the quantitative determination of indinavir sulfate were tested, validated and statistically compared. Assays were carried out using as mobile phases mixtures of dibutylammonium phosphate buffer pH 6.5 and acetonitrile (55:45) at 1 mL/min or citrate buffer pH 5 and acetonitrile (60:40) at 1 mL/min, an octylsilane column (RP-8) and a UV spectrophotometric detector at 260 nm. Both methods showed good sensitivity, linearity, precision and accuracy. The statistical analysis using the t-student test for the determination of indinavir sulfate raw material and capsules indicated no statistically significant difference between the two methods.
Resumo:
A simple and rapid precipitation titration method was developed and validated to determine sulfate ion content in indinavir sulfate raw material. 0.1 mol L-1 lead nitrate volumetric solution was used as titrant employing potentiometric endpoint determination using a lead-specific electrode. The United States Pharmacopoeia Forum indicates a potentiometric method for sulfate ion quantitation using 0.1 mol L-1 lead perchlorate as titrant. Both methods were validated concerning linearity, precision and accuracy, yielding good results. The sulfate ion content found by the two validated methods was compared by the statistical t-student test, indicating that there was no statistically significant difference between the methods.
Resumo:
We carried out an electrochemical study of the cobalt electrodeposition onto glassy carbon electrode from an aqueous solution containing 10-2 M of CoSO4 + 1 M (NH4)2SO4 at natural pH 4.5. The potentiostatic study indicated a progressive 3D nucleation and growth during the deposition process. The average diffusion coefficient calculated for this system was 2.65 X 10-6 cm² s-1 while the ΔG for the formation of stable nucleus was 6.50 X 10-20 J/nuclei. The scanning electron microscopy images indicated the formation of small and homogeneous nucleus onto GCE of approximately 300 nm.
Resumo:
It was carried out an electrochemical study of the cobalt electrodeposition onto HOPG electrode from an aqueous solution containing 10-2 M of CoSO4 + 1M (NH4)2SO4. Nucleation parameters such as nucleation rate, density of active nucleation sites, saturation nucleus and the rate constant of the proton reduction reaction (kPR) were determined from potentiostatic studies. An increase in kPR values with the decrease in the applied potential suggested a competition between H+ and Co2+ by the active sites on the surface. The ΔG energy calculated for the formation of stable nucleus was 8.21x10-21 J/nuclei. The AFM study indicated the formation of small clusters of 50-400 nm in diameter and 2-120 nm in height.
Resumo:
Two sensitive and simple spectrophotmetric methods were developed for determination of Atazanavir Sulfate in capsule dosage form. The first method was based on the oxidative coupling of ATV with 3-Methyl Benzothiazolin-2-one hydrazone (MBTH). The resulting green product had Λmax of 627.3 nm and was stable for 2 h. The second method was based on the reaction between diazotized drug with N-(1-napthyl)ethylenediamine dihydrochloride (NEDA) in neutral medium to yield yellowish orange product which had Λmax of 517.1 nm. The product was stable for 4 h. Both methods were highly reproducible and had been applied to pharmaceutical preparations.
Resumo:
This study reports on the construction of a turbidimeter employing light emitting diodes as radiation source at a wavelength of 405 nm, a photodiode as detector, a temperature sensor and a microcontroller used for data acquisition and processing. The turbidimeter was applied to determine sulfate concentrations in natural water employing barium chloride as reagent. Potential interferences and recovery studies were performed and an interference of 3.5 % and a recovery between 97.8 and 108 % were estimated. The analytical performance of in situ turbidimeter for the determination of sulfate was evaluated and compared with two commercial spectrophotometers and a good agreement was obtained.
Resumo:
A simple and fast approach for solid phase extraction is herein described, and used to determine trace amounts of Pb2+ and Cu2+ metal ions. The solid phase support is sodium dodecyl sulfate (SDS)-coated γ-alumina modified with bis(2-hydroxy acetophenone)-1,6-hexanediimine (BHAH) ligand. The adsorbed ions were stripped from the solid phase by 6 mL of 4 M nitric acid as eluent. The eluting solution was analyzed by flame atomic absorption spectrometry (FAAS). The sorption recovery of metal ions was investigated with regard to the effects of pH, amount of ligand, γ-alumina and surfactant and the amount and type of eluent. Complexation of BHAH with Pb2+ or Cu2+ ions was examined via spectrophotometry using the HypSpec program. The detection limit for Cu2+ was 7.9 µg L-1 with a relative standard deviation of 1.67%, while that for Pb2+ was 6.4 µg L-1 with a relative standard deviation of 1.64%. A preconcentration factor of 100 was achieved for these ions. The method was successfully applied to determine analyte concentrations in samples of liver, parsley, cabbage, and water.
Resumo:
An improved method based on reverse flow injection is proposed for determining sulfate concentration in the wet-process of phosphoric acid (WPA). The effect of reagent composition, flow rate, temperature, acid concentration, length of the reaction coil, and linear response range on the flow system is discussed in detail. Optimal conditions are established for determining sulfate in the WPA samples. Baseline drift is avoided by a periodic washing step with EDTA in an alkaline medium. A linear response is observed within a range of 20 - 360 mg L-1, given by the equation A = 0.0020C (mg L-1) + 0.0300, R² = 0.9991. The detection limit of the proposed method for sulfate analysis is 3 mg L-1, and the relative standard deviation (n = 12) of sulfate absorbance peak is less than 1.60%. This method has a rate of up to 29 samples per hour, and the results compare well with those obtained with gravimetric method.
Resumo:
Gray mold of roses (Rosa hibrida) caused by Botrytis cinerea requires many management strategies for its control. The effect of pulsing rose cv. Kiss with solutions of citric acid, salicylic acid, sucrose, calcium sulfate, and silver thiosulfate (STS) on disease severity and vase life of the flowers was evaluated. The solutions were applied to cut stems at different stages of harvest, the variation in the opening stage of harvest did not affect the results. Pulsing with STS reduced the values of area under the disease progress curve (AUDPC) and of severity of disease by 15% and 55%, respectively, and increased the vase life of the flowers by 20%. Calcium sulfate consistently reduced AUDPC by 66% and maximum severity by 88%, and increased vase life of the flowers by 37%. Therefore, pulsing rose buds with solutions of STS and calcium sulfate is potentially useful in reducing losses due to gray mold after harvest and in extending the vase life.
Resumo:
Heparan sulfate is a component of vertebrate and invertebrate tissues which appears during the cytodifferentiation stage of embryonic development. Its structure varies according to the tissue and species of origin and is modified during neoplastic transformation. Several lines of experimental evidence suggest that heparan sulfate plays a role in cellular recognition, cellular adhesion and growth control. Heparan sulfate can participate in the process of cell division in two distinct ways, either as a positive or negative modulator of cellular proliferation, or as a response to a mitogenic stimulus.
Resumo:
The purpose of the present study was to investigate the in vitro and in vivo effects of aluminum sulfate on delta-aminolevulinic acid dehydratase (ALA-D) activity from the brain, liver and kidney of adult mice (Swiss albine). In vitro experiments showed that the aluminum sulfate concentration needed to inhibit the enzyme activity was 1.0-5.0 mM (N = 3) in brain, 4.0-5.0 mM (N = 3) in liver and 0.0-5.0 mM (N = 3) in kidney. The in vivo experiments were performed on three groups for one month: 1) control animals (N = 8); 2) animals treated with 1 g% (34 mM) sodium citrate (N = 8) and 3) animals treated with 1 g% (34 mM) sodium citrate plus 3.3 g% (49.5 mM) aluminum sulfate (N = 8). Exposure to aluminum sulfate in drinking water inhibited ALA-D activity in kidney (23.3 ± 3.7%, mean ± SEM, P<0.05 compared to control), but enhanced it in liver (31.2 ± 15.0%, mean ± SEM, P<0.05). The concentrations of aluminum in the brain, liver and kidney of adult mice were determined by graphite furnace atomic absorption spectrometry. The aluminum concentrations increased significantly in the liver (527 ± 3.9%, mean ± SEM, P<0.05) and kidney (283 ± 1.7%, mean ± SEM, P<0.05) but did not change in the brain of aluminum-exposed mice. One of the most important and striking observations was the increase in hepatic aluminum concentration in the mice treated only with 1 g% sodium citrate (34 mM) (217 ± 1.5%, mean ± SEM, P<0.05 compared to control). These results show that aluminum interferes with delta-aminolevulinate dehydratase activity in vitro and in vivo. The accumulation of this element was in the order: liver > kidney > brain. Furthermore, aluminum had only inhibitory properties in vitro, while in vivo it inhibited or stimulated the enzyme depending on the organ studied.