19 resultados para Subtractive Hybridisation

em Scielo Saúde Pública - SP


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutations in the katG gene have been identified and correlated with isoniazid (INH) resistance in Mycobacterium tuberculosis isolates. The mutation AGC→ACC (Ser→Thr) at katG315 has been reported to be the most frequent and is associated with transmission and multidrug resistance. Rapid detection of this mutation could therefore improve the choice of an adequate anti-tuberculosis regimen, the epidemiological monitoring of INH resistance and, possibly, the tracking of transmission of resistant strains. An in house reverse hybridisation assay was designed in our laboratory and evaluated with 180 isolates of M. tuberculosis. It could successfully characterise the katG315 mutation in 100% of the samples as compared to DNA sequencing. The test is efficient and is a promising alternative for the rapid identification of INH resistance in regions with a high prevalence of katG315 mutants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A real-time polymerase chain reaction (PCR) assay with fluorescence resonance energy transfer (FRET) hybridisation probes combined with melting curve analysis was developed to detect Schistosoma japonicum in experimentally infected snails and in faecal samples of infected mice. This procedure is based on melting curve analysis of a hybrid between an amplicon from the S. japonicum internal transcribed spacer region 2 sequence, which is a 192-bp S. japonicum-specific sequence, and fluorophore-labelled specific probes. Real-time FRET PCR could detect as little as a single cercaria artificially introduced into a pool of 10 non-infected snails and a single egg inoculated in 100 mg of non-infected mouse faeces. All S. japonicum-infected snails and all faecal samples from infected mice were positive. Non-infected snails, non-infected mouse faeces and genomic DNA from other parasites were negative. This assay is rapid and has potential for epidemiological S. japonicum surveys in snails, intermediate hosts and faecal samples of final hosts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drug-resistant tuberculosis (TB) threatens global TB control and is a major public health concern in several countries. We therefore developed a multiplex assay (LINE-TB/MDR) that is able to identify the most frequent mutations related to rifampicin (RMP) and isoniazid (INH) resistance. The assay is based on multiplex polymerase chain reaction, membrane hybridisation and colorimetric detection targeting of rpoB and katG genes, as well as the inhA promoter, which are all known to carry specific mutations associated with multidrug-resistant TB (MDR-TB). The assay was validated on a reference panel of 108 M. tuberculosis isolates that were characterised by the proportion method and by DNA sequencing of the targets. When comparing the performance of LINE-TB/MDR with DNA sequencing, the sensitivity, specificity and agreement were 100%, 100% and 100%, respectively, for RMP and 77.6%, 90.6% and 88.9%, respectively, for INH. Using drug sensibility testing as a reference standard, the performance of LINE-TB/MDR regarding sensitivity, specificity and agreement was 100%, 100% and 100% (95%), respectively, for RMP and 77%, 100% and 88.7% (82.2-95.1), respectively, for INH. LINE-TB/MDR was compared with GenoType MTBDRplus for 65 isolates, resulting in an agreement of 93.6% (86.7-97.5) for RIF and 87.4% (84.3-96.2) for INH. LINE-TB/MDR warrants further clinical validation and may be an affordable alternative for MDR-TB diagnosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AbstractPhage display is a high-throughput subtractive proteomic technology used for the generation and screening of large peptide and antibody libraries. It is based on the selection of phage-fused surface-exposed peptides that recognize specific ligands and demonstrate desired functionality for diagnostic and therapeutic purposes. Phage display has provided unmatched tools for controlling viral, bacterial, fungal, and parasitic infections, and allowed identification of new therapeutic targets to treat cancer, metabolic diseases, and other chronic conditions. This review presents recent advancements in serodiagnostics and prevention of leishmaniasis -an important tropical parasitic disease- achieved using phage display for the identification of novel antigens with improved sensitivity and specificity. Our focus is on theranostics of visceral leishmaniasis with the aim to develop biomarker candidates exhibiting both diagnostic and therapeutic potential to fight this important, yet neglected, tropical disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Formalin-fixed paraffin embedded lung and liver tissue from 23 cases of non immune hydrops fetalis and five control cases, in which hydrops were due to syphilis (3) and genetic causes (2), were examined for the presence of human parvovirus B19 by DNA hybridisation. Using in situ hybridisation with a biotynilated probe one positive case was detected. Using 32P-labelled probes in a dot blot assay format, five further positives were obtained. These were all confirmed as positive by a nested polymerase chain reaction assay. Electron microscopy revealed virus in all these five positive cases. The six B19 DNA positive cases of hydrops fetalis were from 1974, 1980, 1982, 1987 and 1988, four of which occurred during the second half of the year, confirming the seasonality of the disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There has been good progress in inferring the evolutionary relationships within trypanosomes from DNA data as until relatively recently, many relationships have remained rather speculative. Ongoing molecular studies have provided data that have adequately shown Trypanosoma to be monophyletic and, rather surprisingly, that there are sharply contrasting levels of genetic variation within and between the major trypanosomatid groups. There are still, however, areas of research that could benefit from further development and resolution that broadly fall upon three questions. Are the current statements of evolutionary homology within ribosomal small sub-unit genes in need of refinement? Can the published phylograms be expanded upon to form `supertrees' depicting further relationships? Does a bifurcating tree structure impose an untenable dogma upon trypanosomatid phylogeny where hybridisation or reticulate evolutionary steps have played a part? This article briefly addresses these three questions and, in so doing, hopes to stimulate further interest in the molecular evolution of the group.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A 36 year old male was admitted in December 1997 to hospital with afternoon fever, malaise and hepatosplenomegaly. He also had a dry cough, dyspnoea and anaemia. Pneumonia caused by Pneumocystis carinii and human immunodeficiency virus (HIV) infection were documented. The HIV infection was confirmed in 1997 with 290,000 virus copies. The patient had been in the Mexican State of Chiapas which is known to be endemic for visceral leishmaniosis (VL) and localized cutaneous leishmaniosis (LCL). The visceral symptoms were diagnosed as VL and the causal agent was identified as Leishmania (L.) mexicana. Identification of Leishmania was carried out by the analysis of amplified DNA with specific primers belonging to the Leishmania subgenus and by dot blot positive hybridisation of these polymerase chain reaction derived products with kDNA from the L. (L.) mexicana MC strain used as probe. This is the first case in Mexico of VL caused by a species of Leishmania that typically produces a cutaneous disease form.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although the genome of Trypanosoma cruzi has been completely sequenced, little is known about its population structure and evolution. Since 1999, two major evolutionary lineages presenting distinct epidemiological characteristics have been recognised: T. cruzi I and T. cruzi II. We describe new and important aspects of the population structure of the parasite, and unequivocally characterise a third ancestral lineage that we propose to name T. cruzi III. Through a careful analysis of haplotypes (blocks of genes that are stably transmitted from generation to generation of the parasite), we inferred at least two hybridisation events between the parental lineages T. cruzi II and T. cruzi III. The strain CL Brener, whose genome was sequenced, is one such hybrid. Based on these results, we propose a simple evolutionary model based on three ancestral genomes, T. cruzi I, T. cruzi II and T. cruzi III. At least two hybridisation events produced evolutionarily viable progeny, and T. cruzi III was the cytoplasmic donor for the resulting offspring (as identified by the mitochondrial clade of the hybrid strains) in both events. This model should be useful to inform evolutionary and pathogenetic hypotheses regarding T. cruzi.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An online scheme to assign Stenotrophomonas isolates to genomic groups was developed using the multilocus sequence analysis (MLSA), which is based on the DNA sequencing of selected fragments of the housekeeping genes ATP synthase alpha subunit (atpA), the recombination repair protein (recA), the RNA polymerase alpha subunit (rpoA) and the excision repair beta subunit (uvrB). This MLSA-based scheme was validated using eight of the 10 Stenotrophomonas species that have been previously described. The environmental and nosocomial Stenotrophomonas strains were characterised using MLSA, 16S rRNA sequencing and DNA-DNA hybridisation (DDH) analyses. Strains of the same species were found to have greater than 95% concatenated sequence similarity and specific strains formed cohesive readily recognisable phylogenetic groups. Therefore, MLSA appeared to be an effective alternative methodology to amplified fragment length polymorphism fingerprint and DDH techniques. Strains of Stenotrophomonas can be readily assigned through the open database resource that was developed in the current study (www.steno.lncc.br/).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trypanosomes are parasitic protozoa in which gene expression is primarily controlled through the regulation of mRNA stability and translation. This post-transcriptional control is mediated by various families of RNA-binding proteins, including those with zinc finger CCCH motifs. CCCH zinc finger proteins have been shown to be essential to differentiation events in trypanosomatid parasites. Here, we functionally characterise TcZFP2 as a predicted post-transcriptional regulator of differentiation in Trypanosoma cruzi. This protein was detected in cell culture-derived amastigotes and trypomastigotes, but it was present in smaller amounts in metacyclic trypomastigote forms of T. cruzi. We use an optimised recombinant RNA immunopreciptation followed by microarray analysis assay to identify TcZFP2 target mRNAs. We further demonstrate that TcZFP2 binds an A-rich sequence in which the adenosine residue repeats are essential for high-affinity recognition. An analysis of the expression profiles of the genes encoding the TcZFP2-associated mRNAs throughout the parasite life cycle by microarray hybridisation showed that most of the associated mRNAs were upregulated in the metacyclic trypomastigote forms, also suggesting a role for TcZFP2 in metacyclic trypomastigote differentiation. Knockdown of the orthologous Trypanosoma brucei protein levels showed ZFP2 to be a positive regulator of specific target mRNA abundance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, we used fluorescence in situ hybridisation to determine the chromosomal location of 45S rDNA clusters in 10 species of the tribe Rhodniini (Hemiptera: Reduviidae: Triatominae). The results showed striking inter and intraspecific variability, with the location of the rDNA clusters restricted to sex chromosomes with two patterns: either on one (X chromosome) or both sex chromosomes (X and Y chromosomes). This variation occurs within a genus that has an unchanging diploid chromosome number (2n = 22, including 20 autosomes and 2 sex chromosomes) and a similar chromosome size and genomic DNA content, reflecting a genome dynamic not revealed by these chromosome traits. The rDNA variation in closely related species and the intraspecific polymorphism in Rhodnius ecuadoriensis suggested that the chromosomal position of rDNA clusters might be a useful marker to identify recently diverged species or populations. We discuss the ancestral position of ribosomal genes in the tribe Rhodniini and the possible mechanisms involved in the variation of the rDNA clusters, including the loss of rDNA loci on the Y chromosome, transposition and ectopic pairing. The last two processes involve chromosomal exchanges between both sex chromosomes, in contrast to the widely accepted idea that the achiasmatic sex chromosomes of Heteroptera do not interchange sequences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Single-stranded DNA (ssDNA) is a prerequisite for electrochemical sensor-based detection of parasite DNA and other diagnostic applications. To achieve this detection, an asymmetric polymerase chain reaction method was optimised. This method facilitates amplification of ssDNA from the human lymphatic filarial parasite Wuchereria bancrofti. This procedure produced ssDNA fragments of 188 bp in a single step when primer pairs (forward and reverse) were used at a 100:1 molar ratio in the presence of double-stranded template DNA. The ssDNA thus produced was suitable for immobilisation as probe onto the surface of an Indium tin oxide electrode and hybridisation in a system for sequence-specific electrochemical detection of W. bancrofti. The hybridisation of the ssDNA probe and target ssDNA led to considerable decreases in both the anodic and the cathodic currents of the system's redox couple compared with the unhybridised DNA and could be detected via cyclic voltammetry. This method is reproducible and avoids many of the difficulties encountered by conventional methods of filarial parasite DNA detection; thus, it has potential in xenomonitoring.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The vanC1 gene, which is chromosomally located, confers resistance to vancomycin and serves as a species marker for Enterococcus gallinarum. Enterococcus faecium TJ4031 was isolated from a blood culture and harbours the vanC1gene. Polymerase chain reaction (PCR) assays were performed to detect vanXYc and vanTc genes. Only the vanXYc gene was found in the E. faecium TJ4031 isolate. The minimum inhibitory concentrations of vancomycin and teicoplanin were 2 µg/mL and 1 µg/mL, respectively. Real-time reverse transcription-PCR results revealed that the vanC1and vanXYc genes were not expressed. Pulsed-field gel electrophoresis and southern hybridisation results showed that the vanC1 gene was encoded in the chromosome. E. faecalis isolated from animals has been reported to harbour vanC1gene. However, this study is the first to report the presence of the vanC1gene in E. faecium of human origin. Additionally, our research showed the vanC1gene cannot serve as a species-specific gene of E. gallinarum and that it is able to be transferred between bacteria. Although the resistance marker is not expressed in the strain, our results showed that E. faecium could acquire the vanC1gene from different species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several different models of Trypanosoma cruzi evolution have been proposed. These models suggest that scarce events of genetic exchange occurred during the evolutionary history of this parasite. In addition, the debate has focused on the existence of one or two hybridisation events during the evolution of T. cruzi lineages. Here, we reviewed the literature and analysed available sequence data to clarify the phylogenetic relationships among these different lineages. We observed that TcI, TcIII and TcIV form a monophyletic group and that TcIII and TcIV are not, as previously suggested, TcI-TcII hybrids. Particularly, TcI and TcIII are sister groups that diverged around the same time that a widely distributed TcIV split into two clades (TcIVS and TcIVN). In addition, we collected evidence that TcIII received TcIVSkDNA by introgression on several occasions. Different demographic hypotheses (surfing and asymmetrical introgression) may explain the origin and expansion of the TcIII group. Considering these hypotheses, genetic exchange should have been relatively frequent between TcIII and TcIVS in the geographic area in which their distributions overlapped. In addition, our results support the hypothesis that two independent hybridisation events gave rise to TcV and TcVI. Consequently, TcIVS kDNA was first transferred to TcIII and later to TcV and TcVI in TcII/TcIII hybridisation events.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Developing a fast, inexpensive, and specific test that reflects the mutations present in Mycobacterium tuberculosis isolates according to geographic region is the main challenge for drug-resistant tuberculosis (TB) control. The objective of this study was to develop a molecular platform to make a rapid diagnosis of multidrug-resistant (MDR) and extensively drug-resistant TB based on single nucleotide polymorphism (SNP) mutations present in therpoB, katG, inhA,ahpC, and gyrA genes from Colombian M. tuberculosis isolates. The amplification and sequencing of each target gene was performed. Capture oligonucleotides, which were tested before being used with isolates to assess the performance, were designed for wild type and mutated codons, and the platform was standardised based on the reverse hybridisation principle. This method was tested on DNA samples extracted from clinical isolates from 160 Colombian patients who were previously phenotypically and genotypically characterised as having susceptible or MDR M. tuberculosis. For our method, the kappa index of the sequencing results was 0,966, 0,825, 0,766, 0,740, and 0,625 forrpoB, katG, inhA,ahpC, and gyrA, respectively. Sensitivity and specificity were ranked between 90-100% compared with those of phenotypic drug susceptibility testing. Our assay helps to pave the way for implementation locally and for specifically adapted methods that can simultaneously detect drug resistance mutations to first and second-line drugs within a few hours.