7 resultados para Subsoil

em Scielo Saúde Pública - SP


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leaching of nitrate (NO3-) can increase the groundwater concentration of this anion and reduce the agronomical effectiveness of nitrogen fertilizers. The main soil property inversely related to NO3- leaching is the anion exchange capacity (AEC), whose determination is however too time-consuming for being carried out in soil testing laboratories. For this reason, this study evaluated if more easily measurable soil properties could be used to estimate the resistance of subsoils to NO3- leaching. Samples from the subsurface layer (20-40 cm) of 24 representative soils of São Paulo State were characterized for particle-size distribution and for chemical and electrochemical properties. The subsoil content of adsorbed NO3- was calculated from the difference between the NO3- contents extracted with 1 mol L-1 KCl and with water; furthermore, NO3- leaching was studied in miscible displacement experiments. The results of both adsorption and leaching experiments were consistent with the well-known role exerted by AEC on the nitrate behavior in weathered soils. Multiple regression analysis indicated that in subsoils with (i) low values of remaining phosphorus (Prem), (ii) low soil pH values measured in water (pH H2O), and (iii) high pH values measured in 1 moL L-1 KCl (pH KCl), the amounts of surface positive charges tend to be greater. For this reason, NO3- leaching tends to be slower in these subsoils, even under saturated flow condition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this work was to evaluate the productive performance of broccoli under different top-dressing organic fertilizations. The experiment was conducted under protected cultivation, in a completely randomized design with four replications, with two plants per experimental unit. Broccoli seedlings were produced in a commercial substrate in styrofoam trays. The seedlings were transplanted to plastic pots containing 10.0 L of substrate made up of subsoil and organic compost at the ratio of 3:1 (v/v), respectively, which is equivalent to about 20.0 t ha-1 of organic compost at planting. After seedling establishment, the top-dressing fertilization treatments were applied: gliricidia biomass associated or not with liquid biofertilizer of cattle manure to the soil and bokashi. Two control treatments were established: one with mineral fertilization recommended for the crop and the other without top-dressing fertilization. The broccoli production was evaluated (commercial standard). Plants that received mineral fertilizer were more productive, however, they were not significantly different (p>0.05), by Dunnet test, from the plants fertilized with 2.5 t ha-1 gliricidiabiomass (dry mass) associated with liquid biofertilizer (2.0 L m-2) applied to soil. Top-dressing fertilizations with only gliricidia, at 2.5 and 5.0 t ha-1 of biomass (dry mass), resulted in no significant increase in production of broccoli inflorescence. The use of bokashi in addition to gliricidia biomass and liquid biofertilizer reduced the efficiency of the fertilization compared with plants that received only gliricidia and liquid biofertilizer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fruit tree production is gaining an increasing importance in the central Amazon and elsewhere in the humid tropics, but very little is known about the nutrient dynamics in the soil-plant system. The present study quantified the effects of fertilization and cover cropping with a legume (Pueraria phaseoloides (Roxb.) Benth.) on soil nitrogen (N) dynamics and plant nutrition in a young guarana plantation (Paullinia cupana Kunth. (H.B. and K.) var. sorbilis (Mart.) Ducke) on a highly weathered Xanthic Ferralsol. Large subsoil nitrate (NO3-) accumulation at 0.3-3 m below the guarana plantation indicated N leaching from the topsoil. The NO3- contents to a depth of 2 m were 2.4 times greater between the trees than underneath unfertilized trees (P<0.05). The legume cover crop between the trees increased soil N availability as shown by elevated aerobic N mineralization and lower N immobilization in microbial biomass. The guarana N nutrition and yield did not benefit from the N input by biological fixation of atmospheric N2 by the legume cover (P>0.05). Even without a legume intercrop, large amounts of NO3- were found in the subsoil between unfertilized trees. Subsoil NO3- between the trees could be utilized, however, by fertilized guarana. This can be explained by a more vigorous growth of fertilized trees which had a larger nutrient demand and exploited a larger soil volume. With a legume cover crop, however, more mineral N was available at the topsoil which was leached into the subsoil and consequently accumulated at 0.3-3 m depth. Fertilizer additions of P and K were needed to increase subsoil NO3- use between trees.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Maize root growth is negatively affected by compacted layers in the surface (e.g. agricultural traffic) and subsoil layers (e.g. claypans). Both kinds of soil mechanical impedances often coexist in maize fields, but the combined effects on root growth have seldom been studied. Soil physical properties and maize root abundance were determined in three different soils of the Rolling Pampa of Argentina, in conventionally-tilled (CT) and zero-tilled (ZT) fields cultivated with maize. In the soil with a light Bt horizon (loamy Typic Argiudoll, Chivilcoy site), induced plough pans were detected in CT plots at a depth of 0-0.12 m through significant increases in bulk density (1.15 to 1.27 Mg m-3) and cone (tip angle of 60 º) penetrometer resistance (7.18 to 9.37 MPa in summer from ZT to CT, respectively). This caused a reduction in maize root abundance of 40-80 % in CT compared to ZT plots below the induced pans. Two of the studied soils had hard-structured Bt horizons (clay pans), but in only one of them (silty clay loam Abruptic Argiudoll, Villa Lía site) the expected penetrometer resistance increases (up to 9 MPa) were observed with depth. In the other clay pan soil (silty clay loam Vertic Argiudoll, Pérez Millán site), penetrometer resistance did not increase with depth but reached 14.5 MPa at 0.075 and 0.2 m depth in CT and ZT plots, respectively. However, maize root abundance was stratified in the first 0.2 m at the Villa Lía and Pérez Millán sites. There, the hard Bt horizons did not represent an absolute but a relative mechanical impedance to maize roots, by the observed root clumping through desiccation cracks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Incongruous management techniques have been associated with some significant loss of agricultural land to degradation in many parts of the world. Land degradation results in the alteration of physical, chemical and biological properties of the soil, thereby posing a serious threat to sustainable agricultural development. In this study, our objective is to evaluate the changes in a Cambisol structure under six land use systems using the load bearing capacity model. Sampling was conducted in Amazonas Region, Brazil, in the following land use: a) young secondary forest; b) old secondary forest; c) forest; d) pasture; e) cropping, and f) agroforestry. To obtain the load bearing capacity models the undisturbed soil samples were collected in those land use systems and subjected to the uniaxial compression test. These models were used to evaluate which land use system preserved or degraded the Cambisol structure. The results of the bulk density and total porosity of the soil samples were not adequate to quantify structural degradation in Cambisol. Using the forest topsoil level (0-0.03 m) as a reference, it was observed that pasture land use system was most severe in the degradation of the soil structure while the structure were most preserved under old secondary forest, cropping system and forest. At the subsoil level (0.10-0.13 m depth), the soil structure was most degraded in the cropping land use system while it was most preserved in young secondary forest and pasture. At the 0.20-0.23 m depth, soil structure degradation was most severe in the old secondary forest system and well preserved in young secondary forest, cropping and agroforestry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this work was to assess the effects of pH and ionic strength upon zinc adsorption, in three highly weathered variable charge soils. Adsorption isotherms were elaborated from batch adsorption experiments, with increasing Zn concentrations (0-80 mg L-1), and adsorption envelopes were constructed through soil samples reactions with 0.01, 0.1 and 1 mol L-1 Ca(NO3)2 solutions containing 5 mg L-1 of Zn, with an increasing pH value from 3 to 8. Driving force of reaction was quantified by Gibbs free energy and separation factor. Isotherms were C-, H- and L-type and experimental results were fitted to nonlinear Langmuir model. Maximum adsorption ranged from 59-810 mg kg-1, and Zn affinity was greater in subsoil (0.13-0.81 L kg-1) than in the topsoil samples (0.01-0.34 L kg-1). Zinc adsorption was favorable and spontaneous, and showed sharply increase (20-90%) in the 4-6 pH range. No effect of ionic strength was observed at pH values below 5, because specific adsorption mechanisms predominated in the 3-5 pH range. Above pH 5, and in subsoil samples, Zn was adsorbed by electrostatic mechanisms, since ionic strength effect was observed. Despite depth and ionic strength effects, Zn adsorption depends mainly on the pH.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The subsoil of the Vale do Ribeira was the focus of mining industries for the exploration of lead, mainly inside the park - PETAR. Despite the fact that the exploration has ended, the environmental effects of those activities are still present, due to great amounts of heavy metals that are leached. Concentrations of pseudo-total and bioavailable metals were determined in sediment samples of the Betari River, using atomic absorption spectrometry. The results demonstrated that the sediments are contaminated by Pb, Zn and Cu. The findings can contribute to an efficient and environmentally and economically adequate management of the park, for the conservation and the protection of the area.