4 resultados para Subretinal Neovascularization

em Scielo Saúde Pública - SP


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of the study was to evaluate the topical effects of 0.2% Cyclosporine A (CsA) on corneal neovascularization of rats following surgical implantation of equine amniotic membrane into a corneal stroma micropocket. The implantation of xenologous amniotic membrane was performed bilaterally in 90 rats. In the same day of the surgery each right eye started receiving topical CsA twice a day. The left eye received no medication and served as a control. The evaluation of corneal neovascularization was performed by computerized image analysis and histopathological evaluation at 1, 3, 7, 15, 30 and 60 days postoperatively. For the image analysis 10 animals were used per time period, and for the histopathological examination, five animals were used per time period. Image analysis found that corneal neovascularization began on the 3rd postoperative day, reached its peak on the 7th day, and then progressively and rapidly decreased. Statistic analysis indicated that neovascularization of the CsA treated eye on the 7th day was significantly higher than that observed in untreated eyes. On the 30th day, however, this pattern was reversed with the neovascularization observed in the CsA treated eyes declining to the low levels observed on the 3rd day. The degree of neovascularization in the untreated eyes on the 30th day declined to the baseline levels found on day 3 at the 60th day. Histopathological analysis indicated that deposition of collagen in the implanted tissue was completed by the 15th day. Therefore, we concluded that (1) equine amniotic membrane in rat corneal stroma produced an intense neovascularization until the 15th day postoperatively and then regressed, (2) deposition of collagen of the implanted tissue was completed on the 15th day postoperatively, and (3) use of CsA was associated with increase in the corneal neovascularization initially, followed by a quick and intense regression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of the present study was to develop a quantitative method to evaluate laser-induced choroidal neovascularization (CNV) in a rat model using Heidelberg Retina Angiograph 2 (HRA2) imaging. The expression of two heparan sulfate proteoglycans (HSPG) related to inflammation and angiogenesis was also investigated. CNV lesions were induced with argon laser in 21 heterozygous Zucker rats and after three weeks a fluorescein angiogram and autofluorescence exams were performed using HRA2. The area and greatest linear dimension were measured by two observers not aware of the protocol. Bland-Altman plots showed agreement between the observers, suggesting that the technique was reproducible. After fluorescein angiogram, HSPG (perlecan and syndecan-4) were analyzed by real-time RT-PCR and immunohistochemistry. There was a significant increase in the expression of perlecan and syndecan-4 (P < 0.0001) in retinas bearing CNV lesions compared to control retinas. The expression of these two HSPG increased with increasing CNV area. Immunohistochemistry demonstrated that the rat retina damaged with laser shots presented increased expression of perlecan and syndecan-4. Moreover, we observed that the overexpression occurred in the outer layer of the retina, which is related to choroidal damage. It was possible to develop a standardized quantitative method to evaluate CNV in a rat model using HRA2. In addition, we presented data indicating that the expression of HSPG parallels the area of CNV lesion. The understanding of these events offers opportunities for studies of new therapeutic interventions targeting these HSPG.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background:Vascular remodeling, the dynamic dimensional change in face of stress, can assume different directions as well as magnitudes in atherosclerotic disease. Classical measurements rely on reference to segments at a distance, risking inappropriate comparison between dislike vessel portions.Objective:to explore a new method for quantifying vessel remodeling, based on the comparison between a given target segment and its inferred normal dimensions.Methods:Geometric parameters and plaque composition were determined in 67 patients using three-vessel intravascular ultrasound with virtual histology (IVUS-VH). Coronary vessel remodeling at cross-section (n = 27.639) and lesion (n = 618) levels was assessed using classical metrics and a novel analytic algorithm based on the fractional vessel remodeling index (FVRI), which quantifies the total change in arterial wall dimensions related to the estimated normal dimension of the vessel. A prediction model was built to estimate the normal dimension of the vessel for calculation of FVRI.Results:According to the new algorithm, “Ectatic” remodeling pattern was least common, “Complete compensatory” remodeling was present in approximately half of the instances, and “Negative” and “Incomplete compensatory” remodeling types were detected in the remaining. Compared to a traditional diagnostic scheme, FVRI-based classification seemed to better discriminate plaque composition by IVUS-VH.Conclusion:Quantitative assessment of coronary remodeling using target segment dimensions offers a promising approach to evaluate the vessel response to plaque growth/regression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rheumatoid arthritis (RA) is a chronic debilitating disease characterized by distinct autoimmune, inflammatory and fibrovascular components which lead to synovial proliferation and joint destruction. However, existing treatments specifically target only autoimmune and inflammatory components despite the fact that neovascularization of the inflamed synovium is a hallmark of rheumatoid arthritis. Angiogenesis may contribute to synovial growth, leukocyte recruitment and tissue remodeling, thus potentiating disease progression. Although no therapies currently target angiogenesis, several existing therapies have anti-angiogenic activity. Recent advances in anti-angiogenic strategies in oncology, including the identification of integrin avß3 as a crucial effector of angiogenesis, suggest a means to assess the role of angiogenesis in rheumatoid arthritis. Synovial endothelial cells have been shown to express integrin avß3, suggesting that these cells may be targeted for angiogenesis inhibition. Prior studies in rat arthritis models have shown benefit after the addition of broad spectrum integrin antagonists. However, formal assessment of integrin-targeted anti-angiogenic activity is now underway. These controlled studies will be important in assessing the efficacy of therapies which target angiogenesis in RA.