18 resultados para Subgingival calculus
em Scielo Saúde Pública - SP
Resumo:
Periodontal disease (PD) is widely known among veterinarians for its high prevalence and serious consequences to the dogs. The objective of this study was to assess the occurrence of PD in dogs that live in the micro-region of Viçosa, treated at the Veterinary Hospital of the Federal University of Viçosa (HVT - Hospital Veterinário da Universidade Federal de Viçosa), as well as to assess how aware of this disease dog owners are. In order to do so, all dogs treated at the HVT from March 10th, 2009 to November 30th, 2009, on alternate days, had their oral cavities examined. Medical history data, such as age, type of food, main complaint and owner consent, halitosis, presence of dental calculus, inflammation and gingival recession and tooth loss, were collected. A prevalence of 88.67% was found for PD in dogs referred to the HVT, and 2.67% were referred due to this disease. Of all the owners who participated in the study, 43.83% knew about periodontal disease and of these 17.46% made use of some type of prevention or treatment. Therefore, periodontal disease is highly prevalent and the owners are not aware of the disease. Thus, a dog owner clarification program on periodontal disease is needed in the area where HVT-UFV operates.
Resumo:
OBJECTIVE: To comparatively detect A. actinomycetemcomitans and F. nucleatum from periodontal and healthy sites. METHODS: Subgingival clinical samples from 50 periodontitis adult patients and 50 healthy subjects were analyzed. Both organisms were isolated using a trypticase soy agar-bacitracin-vancomycin (TSBV) medium and detected by PCR. Conventional biochemical tests were used for bacteria identification. RESULTS: A. actinomycetemcomitans and F. nucleatum were isolated in 18% and 20% of the patients, respectively, and in 2% and 24% of healthy subjects. Among A. actinomycetemcomitans isolates, biotype II was the most prevalent. Primer pair AA was 100% sensitive in the detection of A. actinomycetemcomitans from both subject groups. Primers ASH and FU were also 100% sensitive to detect this organism in healthy subject samples. Primer pair FN5047 was more sensitive to detect F. nucleatum in patients or in healthy samples than primer 5059S. Primers ASH and 5059S were more specific in the detection of A. actinomycetemcomitans and F. nucleatum, respectively, in patients and in healthy subject samples. CONCLUSIONS: PCR is an effective tool for detecting periodontal pathogens in subgingival samples, providing a faster and safer diagnostic tool of periodontal diseases. The method's sensitivity and specificity is conditioned by the choice of the set of primers used.
Resumo:
A. actinomycetemcomitans, B. forsythus, P. gingivalis, C. rectus, E. corrodens, P. intermedia, F. nucleatum, and T. denticola were identified from subgingival plaque from 50 periodontal patients and 50 healthy subjects. PCR products from each species showed a specific band and could be used to identify periodontal organisms from clinical specimens. Identical negative or positive results between PCR and culture occurred in 66% (A. actinomycetemcomitans) to 93% (F. nucleatum) of the samples. PCR detection odds ratio values for A. actinomycetemcomitans, B. forsythus, C. rectus, E. corrodens, P. intermedia, and T. denticola were significantly associated with disease having a higher OR values for B. forsythus (2.97, 95% CI 1.88 - 4.70). Cultures showed that A. actinomycetemcomitans, B. forsythus and P. intermedia were associated with periodontitis, however, P. gingivalis, C. rectus, E. corrodens and F. nucleatum were not significantly associated with the disease.
Resumo:
Studies have shown that the age of 12 was determined as the age of global monitoring of caries for international comparisons and monitoring of disease trends. The aimed was to evaluate the prevalence of dental caries, fluorosis and periodontal condition and their relation with socioeconomic factors among schoolchildren aged twelve in the city of Manaus, AM. This study with a probabilistic sample of 661 children was conducted, 609 from public and 52 from private schools, in 2008. Dental caries, periodontal condition and dental fluorosis were evaluated. In order to obtain the socioeconomic classification of each child (high, upper middle, middle, lower middle, low and lower low socioeconomic classes), the guardians were given a questionnaire. The mean decayed teeth, missing teeth, and filled teeth (DMFT) found at age twelve was 1.89. It was observed that the presence of dental calculus was the most severe periodontal condition detected in 39.48%. In relation to dental fluorosis, there was a low prevalence in the children examined, i.e., the more pronounced lines of opacity only occasionally merge, forming small white areas. The study showed a significant association of 5% among social class with dental caries and periodontal condition. In schoolchildren of Manaus there are low mean of DMFT and fluorosis, but a high occurrence of gingival bleeding.
Resumo:
The main object of the present paper consists in giving formulas and methods which enable us to determine the minimum number of repetitions or of individuals necessary to garantee some extent the success of an experiment. The theoretical basis of all processes consists essentially in the following. Knowing the frequency of the desired p and of the non desired ovents q we may calculate the frequency of all possi- ble combinations, to be expected in n repetitions, by expanding the binomium (p-+q)n. Determining which of these combinations we want to avoid we calculate their total frequency, selecting the value of the exponent n of the binomium in such a way that this total frequency is equal or smaller than the accepted limit of precision n/pª{ 1/n1 (q/p)n + 1/(n-1)| (q/p)n-1 + 1/ 2!(n-2)| (q/p)n-2 + 1/3(n-3) (q/p)n-3... < Plim - -(1b) There does not exist an absolute limit of precision since its value depends not only upon psychological factors in our judgement, but is at the same sime a function of the number of repetitions For this reasen y have proposed (1,56) two relative values, one equal to 1-5n as the lowest value of probability and the other equal to 1-10n as the highest value of improbability, leaving between them what may be called the "region of doubt However these formulas cannot be applied in our case since this number n is just the unknown quantity. Thus we have to use, instead of the more exact values of these two formulas, the conventional limits of P.lim equal to 0,05 (Precision 5%), equal to 0,01 (Precision 1%, and to 0,001 (Precision P, 1%). The binominal formula as explained above (cf. formula 1, pg. 85), however is of rather limited applicability owing to the excessive calculus necessary, and we have thus to procure approximations as substitutes. We may use, without loss of precision, the following approximations: a) The normal or Gaussean distribution when the expected frequency p has any value between 0,1 and 0,9, and when n is at least superior to ten. b) The Poisson distribution when the expected frequecy p is smaller than 0,1. Tables V to VII show for some special cases that these approximations are very satisfactory. The praticai solution of the following problems, stated in the introduction can now be given: A) What is the minimum number of repititions necessary in order to avoid that any one of a treatments, varieties etc. may be accidentally always the best, on the best and second best, or the first, second, and third best or finally one of the n beat treatments, varieties etc. Using the first term of the binomium, we have the following equation for n: n = log Riim / log (m:) = log Riim / log.m - log a --------------(5) B) What is the minimun number of individuals necessary in 01der that a ceratin type, expected with the frequency p, may appaer at least in one, two, three or a=m+1 individuals. 1) For p between 0,1 and 0,9 and using the Gaussean approximation we have: on - ó. p (1-p) n - a -1.m b= δ. 1-p /p e c = m/p } -------------------(7) n = b + b² + 4 c/ 2 n´ = 1/p n cor = n + n' ---------- (8) We have to use the correction n' when p has a value between 0,25 and 0,75. The greek letters delta represents in the present esse the unilateral limits of the Gaussean distribution for the three conventional limits of precision : 1,64; 2,33; and 3,09 respectively. h we are only interested in having at least one individual, and m becomes equal to zero, the formula reduces to : c= m/p o para a = 1 a = { b + b²}² = b² = δ2 1- p /p }-----------------(9) n = 1/p n (cor) = n + n´ 2) If p is smaller than 0,1 we may use table 1 in order to find the mean m of a Poisson distribution and determine. n = m: p C) Which is the minimun number of individuals necessary for distinguishing two frequencies p1 and p2? 1) When pl and p2 are values between 0,1 and 0,9 we have: n = { δ p1 ( 1-pi) + p2) / p2 (1 - p2) n= 1/p1-p2 }------------ (13) n (cor) We have again to use the unilateral limits of the Gaussean distribution. The correction n' should be used if at least one of the valors pl or p2 has a value between 0,25 and 0,75. A more complicated formula may be used in cases where whe want to increase the precision : n (p1 - p2) δ { p1 (1- p2 ) / n= m δ = δ p1 ( 1 - p1) + p2 ( 1 - p2) c= m / p1 - p2 n = { b2 + 4 4 c }2 }--------- (14) n = 1/ p1 - p2 2) When both pl and p2 are smaller than 0,1 we determine the quocient (pl-r-p2) and procure the corresponding number m2 of a Poisson distribution in table 2. The value n is found by the equation : n = mg /p2 ------------- (15) D) What is the minimun number necessary for distinguishing three or more frequencies, p2 p1 p3. If the frequecies pl p2 p3 are values between 0,1 e 0,9 we have to solve the individual equations and sue the higest value of n thus determined : n 1.2 = {δ p1 (1 - p1) / p1 - p2 }² = Fiim n 1.2 = { δ p1 ( 1 - p1) + p1 ( 1 - p1) }² } -- (16) Delta represents now the bilateral limits of the : Gaussean distrioution : 1,96-2,58-3,29. 2) No table was prepared for the relatively rare cases of a comparison of threes or more frequencies below 0,1 and in such cases extremely high numbers would be required. E) A process is given which serves to solve two problemr of informatory nature : a) if a special type appears in n individuals with a frequency p(obs), what may be the corresponding ideal value of p(esp), or; b) if we study samples of n in diviuals and expect a certain type with a frequency p(esp) what may be the extreme limits of p(obs) in individual farmlies ? I.) If we are dealing with values between 0,1 and 0,9 we may use table 3. To solve the first question we select the respective horizontal line for p(obs) and determine which column corresponds to our value of n and find the respective value of p(esp) by interpolating between columns. In order to solve the second problem we start with the respective column for p(esp) and find the horizontal line for the given value of n either diretly or by approximation and by interpolation. 2) For frequencies smaller than 0,1 we have to use table 4 and transform the fractions p(esp) and p(obs) in numbers of Poisson series by multiplication with n. Tn order to solve the first broblem, we verify in which line the lower Poisson limit is equal to m(obs) and transform the corresponding value of m into frequecy p(esp) by dividing through n. The observed frequency may thus be a chance deviate of any value between 0,0... and the values given by dividing the value of m in the table by n. In the second case we transform first the expectation p(esp) into a value of m and procure in the horizontal line, corresponding to m(esp) the extreme values om m which than must be transformed, by dividing through n into values of p(obs). F) Partial and progressive tests may be recomended in all cases where there is lack of material or where the loss of time is less importent than the cost of large scale experiments since in many cases the minimun number necessary to garantee the results within the limits of precision is rather large. One should not forget that the minimun number really represents at the same time a maximun number, necessary only if one takes into consideration essentially the disfavorable variations, but smaller numbers may frequently already satisfactory results. For instance, by definition, we know that a frequecy of p means that we expect one individual in every total o(f1-p). If there were no chance variations, this number (1- p) will be suficient. and if there were favorable variations a smaller number still may yield one individual of the desired type. r.nus trusting to luck, one may start the experiment with numbers, smaller than the minimun calculated according to the formulas given above, and increase the total untill the desired result is obtained and this may well b ebefore the "minimum number" is reached. Some concrete examples of this partial or progressive procedure are given from our genetical experiments with maize.
Resumo:
A multivariate curve resolution method, "GENERALIZED RANK ANNIHILATION METHOD (GRAM)", is discussed and tested with simulated and experimental data. The analysis of simulated data provides general guidelines concerning the condition for uniqueness of a solution for a given problem. The second-order emission-excitation spectra of human and animal dental calculus deposits were used as an experimental data to estimate the performance of the above method. Three porphyrinic spectral profiles, for both human and cat, were obtained by the use of GRAM.
Resumo:
The chemical amount values vary in a discrete or continuous form, depending on the approach used to describe the system. In classical sciences, the chemical amount is a property of the macroscopic system and, like any other property of the system, it varies continuously. This is neither inconsistent with the concept of indivisible particles forming the system, nor a mere approximation, but it is a sound concept which enables the use of differential calculus, for instance, in chemical thermodynamics. It is shown that the fundamental laws of chemistry are absolutely compatible to the continuous concept of the chemical amount.
Resumo:
The electronic, structural properties and elastic constants of the wurtzite phase of zinc oxide, ZnO, was investigated using computer simulation at Density Functional Theory level, with B3LYP hybrid functional and Hartree-Fock methodology. The electronic properties as well the band energy was investigated through the analysis of the band structures and density of states (DOS), and the mechanical properties was studied through the calculus of the elastic constants C11, C33, C44, C12 e C13. The results are in good agreement with experimental data found in the literature and in accordance with results obtained by another theoretical methodology.
Resumo:
The pollutant transference among reservoirs atmosphere-hydrosphere, relevant to the atmospheric chemistry, depends upon scavenging coefficient (Λ) calculus, which depends on the raindrop size distribution as well as on the rainfall systems, both different to each locality. In this work, the Λ calculus will be evaluated to gas SO2 and particulate matter fine and coarse among five sites in Germany and two in Brazil. The results show three possible classifications in function of Λ, comparable to literature, however with a greater range due to the differences of rainfall system sites. This preliminary study supports future researches
Resumo:
This work describes the creation of an very simple calculation algorithm, based in basic chemical and mathematic principles, for the calculation of weak diprotic acid dissociation constants as, for example, amino acids, from potentiometric titrations. For an easier understanding of the algorithm the logical reasoning of this calculus is schematized in a diagram of blocks. In the second part of the work the algorithm is applied to an Excel calculation sheet to determine the dissociation constants of Nicotinic Acid and Glycine, from the respective potentiometric titration curves. The values obtained using this algorithm are compared with those estimated by Hyperquad2008 (program generally used for this type of calculus) and also with the values of a stability constants database.
Resumo:
The importance of medicinal plants and their use in industrial applications is increasing worldwide, especially in Brazil. Phyllanthus species, popularly known as "quebra-pedras" in Brazil, are used in folk medicine for treating urinary infections and renal calculus. This paper reports an authenticity study, based on herbal drugs from Phyllanthus species, involving commercial and authentic samples using spectroscopic techniques: FT-IR, ¹H HR-MAS NMR and ¹H NMR in solution, combined with chemometric analysis. The spectroscopic techniques evaluated, coupled with chemometric methods, have great potential in the investigation of complex matrices. Furthermore, several metabolites were identified by the NMR techniques.
Resumo:
ABSTRACT The aim of this paper is to discuss how Bruno Bauch deals with the problem of the coordination between empirical concepts and spatiotemporal objects. We shall argue that Bauch reformulates the Kantian distinction between concepts and intuitions by means of a philosophical consideration of differential calculus and that he thereby explains the possibility of such coordination, avoiding certain difficulties of the Kantian doctrine.
Resumo:
Treatment, morbidity and mortality of patients with gallstone ileus depend on an accurate diagnosis made in time, and also on a more adequate therapeutic option.A detailed clinical evaluation is fundamental for such diagnosis. Complementary exams like a simple radiological study of the abdomen, high and low endoscopies, an ultrasonography, and a tomography can also be performed. The therapeutic options include the removal of the obstructive factor separately, the performance of a treatment in two separate stages, or the performance of a complete treatment (removal of the calculus, cholecystectomy, and the closing of the fistula).This study aims to present a case report of an elderly man of high surgical risk, presenting gallstone ileus. He was submitted to an isolated videoassisted enterolithotomy through a minilaparotomy. Taking into consideration the patients advanced age and the lack of evidence as to other biliary associated pathologies, the chosen treatment seemed to be a good alternative. The evolution was good, and after an 8 month follow-up the patient was found well and with no biliary symptoms whatsoever.
Resumo:
Perforation of common bile duct (CBD) is usually associated with invasive procedures. Spontaneous perforation is rare, and more often described in neonates. We report a case of a spontaneous perforation of CBD in an adult with a family history of cholelithiasis, but with no calculus found during exploration of the biliary tree. The patient was successfully treated by cholecystectomy and T - tube drainage of the CBD.
Resumo:
Periodontitis in cattle is an infectious purulent progressive disease associated with strict anaerobic subgingival biofilm and is epidemiologically related to soil management at several locations of Brazil. This study aimed to detect Treponema species in periodontal pockets of cattle with lesions deeper than 5mm in the gingival sulcus of 6 to 24-month-old animals considered periodontally healthy. We used paper cones to collect the materials, after removal of supragingival plaques, and kept frozen (at -80°C) up to DNA extraction and polymerase chain reaction (PCR) using T. amylovorum, T. denticola, T. maltophilum, T. medium and T. vincentii primers. In periodontal pocket, it was possible to identify by PCR directly, the presence of Treponema amylovorum in 73% of animals (19/26), T. denticola in 42.3% (11/26) and T. maltophilum in 54% (14/26). Among the 25 healthy sites, it was possible to identify T. amylovorum in 18 (72%), T. denticola in two (8%) and T. maltophilum in eight (32%). Treponema medium and T. vincentii were not detected over all 51 evaluated samples. The presence of Treponema amylovorum, T. maltophilum and, in particular, the widely recognized T. denticola in subgingival microflora brings an original and potencially important contribution in studies of the bovine periodontitis.