9 resultados para Structural Design
em Scielo Saúde Pública - SP
Resumo:
Round timber has great use in civil construction, performing the function of beams, columns, foundations, poles for power distribution among others, with the advantage of not being processed, such as lumber. The structural design of round timber requires determining the elastic properties, mainly the modulus of elasticity. The Brazilian standards responsible for the stiffness and strength determination of round timber are in effect for over twenty years with no technical review. Round timber, for generally present an axis with non-zero curvature according to the position of the element in the bending test, may exhibit different values of modulus of elasticity. This study aims to analyze the position effect of Eucalyptus grandis round timber on the flexural modulus of elasticity. The three-point bending test was evaluated in two different positions based on the longitudinal rotation of the round timber element. The results revealed that at least two different positions of the round timber element are desired to obtain significant modulus of elasticity.
Resumo:
At present stage the analytical design of wave tolerance for floating structures and vessels is still imperfect due to the mutually complex and nonlinear phenomena between structures and waves. Wave tolerance design is usually carried out through iterative evaluations of results from model tests in a wave basin, and this is done in order to reach a final structural design. The wave generation has then become an important technology in the field of the coastal and ocean engineering. This paper summarizes the facilities of a test basin and a wave maker in Japan and also surveys the methodology of the generation of ocean waves in a test basin.
Resumo:
Dopamine constitutes about 80% of the content of central catecholamines and has a crucial role in the etiology of several neuropsychiatric disorders, including Parkinson's disease, depression and schizophrenia. Several dopaminergic drugs are used to treat these pathologies, but many problems are attributed to these therapies. Within this context, the search for new more efficient dopaminergic agents with less adverse effects represents a vast research field. The aim of the present study was to report the structural design of two N-phenylpiperazine derivatives, compound 4: 1-[1-(4-chlorophenyl)-1H-4-pyrazolylmethyl]-4-phenylhexahydropyrazine and compound 5: 1-[1-(4-chlorophenyl)-1H-1,2,3-triazol-4-ylmethyl]-4-phenylhexahydropyrazine, planned to be dopamine ligands, and their dopaminergic action profile. The two compounds were assayed (dose range of 15-40 mg/kg) in three experimental models: 1) blockade of amphetamine (30 mg/kg, ip)-induced stereotypy in rats; 2) the catalepsy test in mice, and 3) apomorphine (1 mg/kg, ip)-induced hypothermia in mice. Both derivatives induced cataleptic behavior (40 mg/kg, ip) and a hypothermic response (30 mg/kg, ip) which was not prevented by haloperidol (0.5 mg/kg, ip). Compound 5 (30 mg/kg, ip) also presented a synergistic hypothermic effect with apomorphine (1 mg/kg, ip). Only compound 4 (30 mg/kg, ip) significantly blocked the amphetamine-induced stereotypy in rats. The N-phenylpiperazine derivatives 4 and 5 seem to have a peculiar profile of action on dopaminergic functions. On the basis of the results of catalepsy and amphetamine-induced stereotypy, the compounds demonstrated an inhibitory effect on dopaminergic behaviors. However, their hypothermic effect is compatible with the stimulation of dopaminergic function which seems not to be mediated by D2/D3 receptors.
Resumo:
Most of the Brazilian HIV-1 samples have been characterized based on the structural genes (env, gag and pol) and no data concerning the variability of the accessory genes such as nef have been available so far. Considering the role of the nef on virus biology and the inclusion of this region in some HIV/AIDS vaccine products under testing, the purpose of this study was to document the genetic diversity of the nef gene in third-four HIV-1 Brazilian samples previously subtyped based on the env C2-V3 region. Although only few non-subtype B samples have already been analyzed so far, the cytotoxic Tlymphocyte epitopes encoded in this region were relatively conserved among the subtypes, with some amino acid signatures mainly in the subtype C samples. Considering the increasing of the non-B HIV-1 subtypes worldwide, in special the subtype C, more data should be generated concerning the genetic and antigenic variability of these subtypes, as well as the study of the impact of such polymorphism in HIV/AIDS vaccine design and testing.
Resumo:
This study aimed to evaluate β-galactosidase immobilization. For this purpose, the ionic strength of the buffer, reaction time, amount of the immobilization support, and pH were evaluated by a central composite design. Assay 8, which consisted of 1.5 mol L-1 phosphate buffer (pH 7.5) and a reaction time of 2 h, produced the maximum yield. Eupergit® C (400 mg) was subsequently used as an immobilization support. Immobilization kinetics wereinvestigated, and a significant increase in the yield was obtained after immobilization compared with that obtained from assay 8 (22.0 U mL-1 vs. 15.6 U mL-1). The enzyme efficiency of actuation was evaluated using o-nitrophenyl-β-D-galactopyranoside and lactose, with lactose providing better results. The reuse of β-galactosidase was evaluated, and more than 50% of the initial enzyme activity was maintained after five cycles of use. Enzyme characterization revealed that immobilization improved some aspects of the thermostability of β-galactosidase.
Resumo:
The present work describes molecular models for the binary complexes CDK9, CDK5 and CDK1 complexed with Flavopiridol and Roscovitine. These structural models indicate that the inhibitors strongly bind to the ATP-binding pocket of CDKs and the structural comparison with the complexes CDK2:Flavopiridol and CDK2:Roscovitine correlates the structural differences with differences in inhibition of these CDKs by the inhibitors. These structures open the possibility of testing new inhibitor families, in addition to new substituents for the already known lead structures such as flavones and adenine derivatives.
Resumo:
This work presents recent results concerning a design methodology used to estimate the positioning deviation for a gantry (Cartesian) manipulator, related mainly to structural elastic deformation of components during operational conditions. The case-study manipulator is classified as gantry type and its basic dimensions are 1,53m x 0,97m x 1,38m. The dimensions used for the calculation of effective workspace due to end-effector path displacement are: 1m x 0,5m x 0,5m. The manipulator is composed by four basic modules defined as module X, module Y, module Z and terminal arm, where is connected the end-effector. Each module controlled axis performs a linear-parabolic positioning movement. The planning path algorithm has the maximum velocity and the total distance as input parameters for a given task. The acceleration and deceleration times are the same. Denavit-Hartemberg parameterization method is used in the manipulator kinematics model. The gantry manipulator can be modeled as four rigid bodies with three degrees-of-freedom in translational movements, connected as an open kinematics chain. Dynamic analysis were performed considering inertial parameters specification such as component mass, inertia and center of gravity position of each module. These parameters are essential for a correct manipulator dynamic modelling, due to multiple possibilities of motion and manipulation of objects with different masses. The dynamic analysis consists of a mathematical modelling of the static and dynamic interactions among the modules. The computation of the structural deformations uses the finite element method (FEM).
Resumo:
Liposomes (lipid-based vesicles) have been widely studied as drug delivery systems due to their relative safety, their structural versatility concerning size, composition and bilayer fluidity, and their ability to incorporate almost any molecule regardless of its structure. Liposomes are successful in inducing potent in vivo immunity to incorporated antigens and are now being employed in numerous immunization procedures. This is a brief overview of the structural, biophysical and pharmacological properties of liposomes and of the current strategies in the design of liposomes as vaccine delivery systems.
Resumo:
The recombinant heat shock protein (18 kDa-hsp) from Mycobacterium leprae was studied as a T-epitope model for vaccine development. We present a structural analysis of the stability of recombinant 18 kDa-hsp during different processing steps. Circular dichroism and ELISA were used to monitor protein structure after thermal stress, lyophilization and chemical modification. We observed that the 18 kDa-hsp is extremely resistant to a wide range of temperatures (60% of activity is retained at 80ºC for 20 min). N-Acylation increased its ordered structure by 4% and decreased its ß-T1 structure by 2%. ELISA demonstrated that the native conformation of the 18 kDa-hsp was preserved after hydrophobic modification by acylation. The recombinant 18 kDa-hsp resists to a wide range of temperatures and chemical modifications without loss of its main characteristic, which is to be a source of T epitopes. This resistance is probably directly related to its lack of organization at the level of tertiary and secondary structures.