44 resultados para Stimulating factor-i
em Scielo Saúde Pública - SP
Resumo:
Multinucleated giant cells (MGC) are cells present in characteristic granulomatous inflammation induced by intracellular infectious agents or foreign materials. The present study evaluated the modulatory effect of granulocyte macrophage colony-stimulating factor (GM-CSF) in association with other cytokines such as interferon-gamma (IFN-γ), tumour necrosis factor-alpha, interleukin (IL)-10 or transforming growth factor beta (TGF-β1) on the formation of MGC from human peripheral blood monocytes stimulated with Paracoccidioides brasiliensis antigen (PbAg). The generation of MGC was determined by fusion index (FI) and the fungicidal activity of these cells was evaluated after 4 h of MGC co-cultured with viable yeast cells of P. brasiliensis strain 18 (Pb18). The results showed that monocytes incubated with PbAg and GM-CSF plus IFN-γ had a significantly higher FI than in all the other cultures, while the addition of IL-10 or TGF-β1 had a suppressive effect on MGC generation. Monocytes incubated with both pro and anti-inflammatory cytokines had a higher induction of foreign body-type MGC rather than Langhans-type MGC. MGC stimulated with PbAg and GM-CSF in association with the other cytokines had increased fungicidal activity and the presence of GM-CSF also partially inhibited the suppressive effects of IL-10 and TGF-β1. Together, these results suggest that GM-CSF is a positive modulator of PbAg-stimulated MGC generation and on the fungicidal activity against Pb18.
Resumo:
T-cell based vaccines against human immunodeficiency virus (HIV) generate specific responses that may limit both transmission and disease progression by controlling viral load. Broad, polyfunctional, and cytotoxic CD4+T-cell responses have been associated with control of simian immunodeficiency virus/HIV-1 replication, supporting the inclusion of CD4+ T-cell epitopes in vaccine formulations. Plasmid-encoded granulocyte-macrophage colony-stimulating factor (pGM-CSF) co-administration has been shown to induce potent CD4+ T-cell responses and to promote accelerated priming and increased migration of antigen-specific CD4+ T-cells. However, no study has shown whether co-immunisation with pGM-CSF enhances the number of vaccine-induced polyfunctional CD4+ T-cells. Our group has previously developed a DNA vaccine encoding conserved, multiple human leukocyte antigen (HLA)-DR binding HIV-1 subtype B peptides, which elicited broad, polyfunctional and long-lived CD4+ T-cell responses. Here, we show that pGM-CSF co-immunisation improved both magnitude and quality of vaccine-induced T-cell responses, particularly by increasing proliferating CD4+ T-cells that produce simultaneously interferon-γ, tumour necrosis factor-α and interleukin-2. Thus, we believe that the use of pGM-CSF may be helpful for vaccine strategies focused on the activation of anti-HIV CD4+ T-cell immunity.
Resumo:
Foot-and-mouth disease (FMD) is one of the most feared diseases of livestock worldwide. Vaccination has been a very effective weapon in controlling the disease, however a number of concerns with the current vaccine including the inability of approved diagnostic tests to reliably distinguish vaccinated from infected animals and the need for high containment facilities for vaccine production, have limited its use during outbreaks in countries previously free of the disease. A number of FMD vaccine candidates have been tested and a replication-defective human adenovirus type 5 (Ad5) vector containing the FMDV capsid (P1-2A) and 3C protease coding regions has been shown to completely protect pigs against challenge with the homologous virus (FMDV A12 and A24). An Ad5-P1-2A+3C vaccine for FMDV O1 Campos (Ad5-O1C), however, only induced a low FMDV-specific neutralizing antibody response in swine potency tests. Granulocyte-macrophage colony-stimulating factor (GM-CSF) has been successfully used to stimulate the immune response in vaccine formulations against a number of diseases, including HIV, hepatitis C and B. To attempt to improve the FMDV-specific immune response induced by Ad5-O1C, we inoculated swine with Ad5-O1C and an Ad5 vector containing the gene for porcine GM-CSF (pGM-CSF). However, in the conditions used in this trial, pGM-CSF did not improve the immune response to Ad5-O1C and adversely affected the level of protection of swine challenged with homologous FMDV.
Resumo:
The study aimed to quantify the concentrations of free IGF-I in serum and fluid of ovarian follicles in pre-pubertal gilts and describe the ovarian morphology by measuring the size of the ovaries and counting the number of surface follicles. Ovaries (n=1,000) from pre-pubertal gilts were obtained immediately after slaughter. A total of 10 samplings were performed, with ovaries obtained from 50 females for each collection. The follicles situated on the surface of each ovary were classified as small (SFs, 2 to 5mm in diameter) or large (LFs 6 to 10mm in diameter) and the follicular fluid was obtained by follicle aspiration. The collection of serum samples was performed after the gilts exsanguination using sterile tubes. From the pool of serum and follicular fluid obtained from 50 females, the concentration of free IGF-I was determined in each sample using an enzyme immunoassay kit (ELISA). The description of ovarian morphometry was performed in 100 ovaries from randomly selected gilts. The larger and smaller lengths of ovaries were measured, and the total number of SFs and LFs present on the surface of each ovary were also counted. The IGF-I concentration was greater (P<0.05) in LFs (170.92±88.29 ng/mL) compared with SFs (67.39±49.90ng/mL) and serum (73.48±34.63ng/mL). The largest and smallest length of the ovaries was 26.0±3.0 and 19.0mm ±2.0mm, respectively. The number of SFs (70.86±25.76) was greater (P<0.01) than LFs (6.54±5.26). The study concluded that LFs present greater levels of IGF-I when compared with SFs and blood, which is related to increased activity of the LFs and its differentiation to ovulation. In addition, ovaries of pre-pubertal gilts have a higher number of SFs compared to LFs. Therefore, our study demonstrated unique data regarding the physiological concentration of free IGF-I in ovarian follicles, that can be used in future research to evaluate the addition of this hormone in the in vitro production media of porcine embryos with the goal to improve the technique efficiency.
Resumo:
The aim of this study was to investigate the effects of the insulin-like growth factor -I (IGF-I) on survival, activation (transition from primordial to primary follicles) and growth of caprine preantral follicles cultured in vitro. Fragments of ovarian cortex were cultured for one and seven days in the absence or presence of IGF-I (0, 50 and 100ng/ml). The non-cultured and cultured tissues were processed and analyzed by histology and transmission electron microscopy. The culture for one day in a medium with 100ng/ml of IGF-I showed 86.7% of morphologically normal follicles. These results were similar (P>0.05) to the percentage of normal follicles found in the control (96.7%). It was also found that this medium increased the percentage of follicular activation (developing follicles) with one day of culture. The oocyte and follicular diameters remained similar to the control by culturing for one day in a medium containing 100ng/ml of IGF-I. The ultrastructural analysis did not confirm the integrity of the follicular fragments in a medium containing IGF-I (100ng/ml) after one and seven days of culture. In conclusion, this study demonstrated that the addition of 100 ng/ml of IGF-I in the culture medium enables the development of preantral follicles of goats with one day of culture. However, it is not sufficient to maintain the follicular integrity and the follicular survival rate after seven days of culture.
Resumo:
The objective of this study was to determine the effects of GDF-9, IGF-I, and GH alone or combined on preantral follicle survival, activation and development after 1 and 7 days of in vitro culture. Either fresh (non-cultured) or cultured ovarian tissue was processed for histological and fluorescence analysis. For all media tested, the percent of normal follicles was greater when compared to minimum essential medium supplemented (MEM+) alone, except when ovarian tissue was cultured with GDF-9/IGF-I or GDF-9/GH (P < 0.05). Fluorescence analysis showed that the percent of viable follicles after 7 days of culture was similar for non-cultured tissue and for all treatments tested. The percent of primordial follicles was reduced (P < 0.05) and there was a significant and concomitant increase in the percent of intermediate and primary follicles in all treatments tested after 7 days of culture when compared to non-cultured tissue. After 7 days of culture, the highest percent of intermediate follicles was observed with IGF-I/GH (61.3%), and the highest percent of primary follicles was achieved with IGF-I (57.7%). After 7 days of culture in MEM+ containing GDF-9, IGF-I and GH alone or in all associations, a significant increase in follicular diameter was observed when compared to MEM+ alone and non-cultured tissue. In conclusion, GDF-9, IGF-I and GH alone or in combination maintain preantral follicle survival and promote primordial follicle activation. Nevertheless, the data showed that IGF-I/GH and IGF-I alone are efficient in promoting the transition from primordial to intermediate follicles and from intermediate to primary follicles, respectively.
Resumo:
The objective of this study was to evaluate the plasma concentrations of insulin-like growth factor-I (IGF-I), and the mRNA hepatic expression of IGF-I and of the growth hormone receptors GHR and GHR 1A, in postpartum beef cows. Four Angus and four crossbred (Angus x Nelore) postpartum suckled beef cows were used. Liver and blood samples were collected every 10 days, from calving to 40 days postpartum, for gene expression and for β-hydroxybutyrate and IGF-I assays, respectively. Samples for progesterone assay were collected every other day, from day 10 to 40 postpartum. Three cows ovulated before 40 days postpartum. IGF-I concentration was higher in Angus x Nelore than in Angus cows. There was no difference in the expression of GHR, GHR 1A and IGF-I according to breed or ovulatory status. IGF-I concentrations were higher in crossbred cows, but have not changed according to postpartum ovulatory status. Moreover, changes in postpartum IGF-I concentrations are not associated with changes in liver GHR, GHR 1A and IGF-I mRNA expression in either breed.
Resumo:
The induction of systemic (IgG) and mucosal (IgA) antibody responses against the colonization factor I antigen (CFA/I) of enterotoxigenic Escherichia coli (ETEC) was evaluated in mice primed with an intramuscularly delivered CFA/I-encoding DNA vaccine followed by two oral immunizations with a live recombinant Salmonella typhimurium vaccine strain expressing the ETEC antigen. The booster effect induced by the oral immunization was detected two weeks and one year after the administration of the DNA vaccine. The DNA-primed/Salmonella-boosted vaccination regime showed a synergistic effect on the induced CFA/I-specific systemic and secreted antibody levels which could not be attained by either immunization strategy alone. These results suggest that the combined use of DNA vaccines and recombinant Salmonella vaccine strains can be a useful immunization strategy against enteric pathogens.
Resumo:
We assessed the effect of chronic hyperglycemia on bone mineral density (BMD) and bone remodeling in patients with type 2 diabetes mellitus. We investigated 42 patients with type 2 diabetes under stable control for at least 1 year, 22 of them with good metabolic control (GMC: mean age = 48.8 ± 1.5 years, 11 females) and 20 with poor metabolic control (PMC: mean age = 50.2 ± 1.2 years, 8 females), and 24 normal control individuals (CG: mean age = 46.5 ± 1.1 years, 14 females). We determined BMD in the femoral neck and at the L2-L4 level (DEXA) and serum levels of glucose, total glycated hemoglobin (HbA1), total and ionic calcium, phosphorus, alkaline phosphatase, follicle-stimulating hormone, intact parathyroid hormone (iPTH), 25-hydroxyvitamin D (25-OH-D), insulin-like growth factor I (IGFI), osteocalcin, procollagen type I C propeptide, as well as urinary levels of deoxypyridinoline and creatinine. HbA1 levels were significantly higher in PMC patients (12.5 ± 0.6 vs 7.45 ± 0.2% for GMC and 6.3 ± 0.9% for CG; P < 0.05). There was no difference in 25-OH-D, iPTH or IGFI levels between the three groups. BMD values at L2-L4 (CG = 1.068 ± 0.02 vs GMC = 1.170 ± 0.03 vs PMC = 1.084 ± 0.02 g/cm²) and in the femoral neck (CG = 0.898 ± 0.03 vs GMC = 0.929 ± 0.03 vs PMC = 0.914 ± 0.03 g/cm²) were similar for all groups. PMC presented significantly lower osteocalcin levels than the other two groups, whereas no significant difference in urinary deoxypyridine was observed between groups. The present results demonstrate that hyperglycemia is not associated with increased bone resorption in type 2 diabetes mellitus and that BMD is not altered in type 2 diabetes mellitus.
Resumo:
Insulin receptor substrate-1 (IRS-1) is the main intracellular substrate for both insulin and insulin-like growth factor I (IGF-I) receptors and is critical for cell mitogenesis. Thyrotropin is able to induce thyroid cell proliferation through the cyclic AMP intracellular cascade; however, the presence of either insulin or IGF-I is required for the mitogenic effect of thyroid-stimulating hormone (TSH) to occur. The aim of the present study was to determine whether thyroid IRS-1 content is modulated by TSH in vivo. Strikingly, hypothyroid goitrous rats, which have chronically high serum TSH levels (control, C = 2.31 ± 0.28; methimazole (MMI) 21d = 51.02 ± 6.02 ng/mL, N = 12 rats), when treated with 0.03% MMI in drinking water for 21 days, showed significantly reduced thyroid IRS-1 mRNA content. Since goiter was already established in these animals by MMI for 21 days, we also evaluated IRS-1 expression during goitrogenesis. Animals treated with MMI for different periods of time showed a progressive increase in thyroid weight (C = 22.18 ± 1.21; MMI 5d = 32.83 ± 1.48; MMI 7d = 31.1 ± 3.25; MMI 10d = 33.8 ± 1.25; MMI 14d = 45.5 ± 2.56; MMI 18d = 53.0 ± 3.01; MMI 21d = 61.9 ± 3.92 mg, N = 9-15 animals per group) and serum TSH levels (C = 1.57 ± 0.2; MMI 5d = 9.95 ± 0.74; MMI 7d = 10.38 ± 0.84; MMI 10d = 17.72 ± 1.47; MMI 14d = 25.65 ± 1.23; MMI 18d = 35.38 ± 3.69; MMI 21d = 31.3 ± 2.7 ng/mL, N = 9-15 animals per group). Thyroid IRS-1 mRNA expression increased progressively during goitrogenesis, being significantly higher by the 14th day of MMI treatment, and then started to decline, reaching the lowest values by the 21st day, when a significant reduction was detected. In the liver of these animals, however, a significant decrease of IRS-1 mRNA was detected after 14 days of MMI treatment, a mechanism probably involved in the insulin resistance that occurs in hypothyroidism. The increase in IRS-1 expression during goitrogenesis may represent an important event associated with the increased rate of cell mitosis promoted by TSH and indicates that insulin and IGF-I are important co-mitogenic factors in vivo, possibly acting through the activation of IRS-1.
Resumo:
Children with chronic renal failure in general present growth retardation that is aggravated by corticosteroids. We describe here the effects of methylprednisolone (MP) and recombinant human growth hormone (rhGH) on the growth plate (GP) of uremic rats. Uremia was induced by subtotal nephrectomy in 30-day-old rats, followed by 20 IU kg-1 day-1 rhGH (N = 7) or 3 mg kg-1 day-1 MP (N = 7) or 20 IU kg-1 day-1 rhGH + 3 mg kg-1 day-1 MP (N = 7) treatment for 10 days. Control rats with intact renal function were sham-operated and treated with 3 mg kg-1 day-1 MP (N = 7) or vehicle (N = 7). Uremic rats (N = 7) were used as untreated control animals. Structural alterations in the GP and the expression of anti-proliferating cell nuclear antigen (PCNA) and anti-insulin-like growth factor I (IGF-I) by epiphyseal chondrocytes were evaluated. Uremic MP rats displayed a reduction in the proliferative zone height (59.08 ± 4.54 vs 68.07 ± 7.5 µm, P < 0.05) and modifications in the microarchitecture of the GP. MP and uremia had an additive inhibitory effect on the proliferative activity of GP chondrocytes, lowering the expression of PCNA (19.48 ± 11.13 vs 68.64 ± 7.9% in control, P < 0.0005) and IGF-I (58.53 ± 0.96 vs 84.78 ± 2.93% in control, P < 0.0001), that was counteracted by rhGH. These findings suggest that in uremic rats rhGH therapy improves longitudinal growth by increasing IGF-I synthesis in the GP and by stimulating chondrocyte proliferation.
Resumo:
Damage to cartilage causes a loss of type II collagen (Col-II) and glycosaminoglycans (GAG). To restore the original cartilage architecture, cell factors that stimulate Col-II and GAG production are needed. Insulin-like growth factor I (IGF-I) and transcription factor SOX9are essential for the synthesis of cartilage matrix, chondrocyte proliferation, and phenotype maintenance. We evaluated the combined effect of IGF-I and SOX9 transgene expression on Col-II and GAG production by cultured human articular chondrocytes. Transient transfection and cotransfection were performed using two mammalian expression plasmids (pCMV-SPORT6), one for each transgene. At day 9 post-transfection, the chondrocytes that were over-expressing IGF-I/SOX9 showed 2-fold increased mRNA expression of the Col-II gene, as well as a 57% increase in Col-II protein, whereas type I collagen expression (Col-I) was decreased by 59.3% compared with controls. The production of GAG by these cells increased significantly compared with the controls at day 9 (3.3- vs 1.8-times, an increase of almost 83%). Thus, IGF-I/SOX9 cotransfected chondrocytes may be useful for cell-based articular cartilage therapies.
Resumo:
OBJECTIVE To analyze the effect of air pollution and temperature on mortality due to cardiovascular and respiratory diseases. METHODS We evaluated the isolated and synergistic effects of temperature and particulate matter with aerodynamic diameter < 10 µm (PM10) on the mortality of individuals > 40 years old due to cardiovascular disease and that of individuals > 60 years old due to respiratory diseases in Sao Paulo, SP, Southeastern Brazil, between 1998 and 2008. Three methodologies were used to evaluate the isolated association: time-series analysis using Poisson regression model, bidirectional case-crossover analysis matched by period, and case-crossover analysis matched by the confounding factor, i.e., average temperature or pollutant concentration. The graphical representation of the response surface, generated by the interaction term between these factors added to the Poisson regression model, was interpreted to evaluate the synergistic effect of the risk factors. RESULTS No differences were observed between the results of the case-crossover and time-series analyses. The percentage change in the relative risk of cardiovascular and respiratory mortality was 0.85% (0.45;1.25) and 1.60% (0.74;2.46), respectively, due to an increase of 10 μg/m3 in the PM10 concentration. The pattern of correlation of the temperature with cardiovascular mortality was U-shaped and that with respiratory mortality was J-shaped, indicating an increased relative risk at high temperatures. The values for the interaction term indicated a higher relative risk for cardiovascular and respiratory mortalities at low temperatures and high temperatures, respectively, when the pollution levels reached approximately 60 μg/m3. CONCLUSIONS The positive association standardized in the Poisson regression model for pollutant concentration is not confounded by temperature, and the effect of temperature is not confounded by the pollutant levels in the time-series analysis. The simultaneous exposure to different levels of environmental factors can create synergistic effects that are as disturbing as those caused by extreme concentrations.
Resumo:
Introduction The aim of this study was to investigate the effects of Rosmarinus officinalis essential oil on germ tube formation by Candida albicans isolated from denture wearers. Methods Ten C. albicans isolates recovered from denture wearers were tested using 10% fetal bovine serum with or without 4% R. officinalis essential oil. Results The essential oil from R. officinalis completely inhibited germ tube formation in the investigated C. albicans isolates. Conclusions The results demonstrate that the essential oil of R. officinalis modulates C. albicans pathogenicity through its primary virulence factor (i.e., germ tube formation was suppressed).