43 resultados para Steam Permeability
em Scielo Saúde Pública - SP
Resumo:
Abstract OBJECTIVE Determining which is the most effective solution (heparin flush compared to 0.9% saline flush) for reducing the risk of occlusions in central venous catheters (CVC) in adults. METHOD The systematic review followed the principles proposed by the Cochrane Handbook; critical analysis, extraction and synthesis of data were performed by two independent researchers; statistical analysis was performed using the RevMan program 5.2.8. RESULTS Eight randomized controlled trials and one cohort study were included and the results of the meta-analysis showed no difference (RR=0.68, 95% CI=0.41-1.10; p=0.12). Analysis by subgroups showed that there was no difference in fully deployed CVC (RR=1.09, CI 95%=0.53-2.22;p=0.82); Multi-Lumen CVC showed beneficial effects in the heparin group (RR=0.53, CI 95%=0.29-0.95; p=0.03); in Double-Lumen CVC for hemodialysis (RR=1.18, CI 95%=0.08-17.82;p=0.90) and Peripherally inserted CVC (RR=0.14, CI 95%=0.01-2.60; p=0.19) also showed no difference. CONCLUSION Saline solution is sufficient for maintaining patency of the central venous catheter, preventing the risks associated with heparin administration.
Resumo:
Pretreatment of lignocellulosic materials is essential for bioconversion because of the various physical and chemical barriers that greatly inhibit their susceptibility to bioprocesses such as hydrolysis and fermentation. The aim of this article is to review some of the most important pretreatment methods developed to date to enhance the conversion of lignocellulosics. Steam explosion, which precludes the treatment of biomass with high-pressure steam under optimal conditions, is presented as the pretreatment method of choice and its mode of action on lignocellulosics is discussed. The optimal pretreatment conditions for a given plant biomass are defined as those in which the best substrate for hydrolysis is obtained with the least amount of soluble sugars lost to side reactions such as dehydration. Therefore, pretreatment optimization results from a compromise between two opposite trends because hemicellulose recovery in acid hydrolysates can only be maximized at lower pretreatment severities, whereas the development of substrate accessibility requires more drastic pretreatment conditions in which sugar losses are inevitable. To account for this heterogeneity, the importance of several process-oriented parameters is discussed in detail, such as the pretreatment temperature, residence time into the steam reactor, use of an acid catalyst, susceptibility of the pretreated biomass to bioconversion, and process design.
Resumo:
Methanol steam reforming reaction was studied over Cu(5 wt.%)/CeO2 with and without the presence of Zn. The Zn addition decreased the Cu+2 reducibility and increased the oxygen mobility of ceria. The main products were CO2 and H2 with small amount of CO. Selectivity to CO decreased with the Zn addition and it was lower at lower reaction temperatures and lower space velocities. At 230 ºC and W/F MeOH = 648 g min mol-1 selectivities to H2 and to CO2 were 100% on Zn/Cu/Ce. The catalytic results indicated that CO was mainly a secondary product formed from reverse water gas shift reaction.
Resumo:
The influence of voltage on the conductance of toad skin was studied to identify the time course of the activation/deactivation dynamics of voltage-dependent Cl- channels located in the apical membrane of mitochondrion-rich cells in this tissue. Positive apical voltage induced an important conductance inhibition which took a few seconds to fully develop and was instantaneously released by pulse inversion to negative voltage, indicating a short-duration memory of the inhibiting factors. Sinusoidal stimulation at 23.4 mM [Cl-] showed hysteresis in the current versus voltage curves, even at very low frequency, suggesting that the rate of voltage application was also relevant for the inhibition/releasing effect to develop. We conclude that the voltage modulation of apical Cl- permeability is essentially a fast process and the apparent slow components of activation/deactivation obtained in the whole skin are a consequence of a gradual voltage build-up across the apical membrane due to voltage sharing between apical and basolateral membranes
Resumo:
High magnesium concentration inhibits the effect of arginine vasopressin (AVP) on smooth muscle contraction and platelet aggregation and also influences hepatocyte AVP receptor binding. The aim of this study was to determine the role of magnesium concentration [Mg2+] in AVP-stimulated water transport in the kidney collecting duct. The effect of low and high peritubular [Mg2+] on the AVP-stimulated osmotic water permeability coefficient (Pf) was evaluated in the isolated perfused rabbit cortical collecting duct (CCD). Control tubules bathed and perfused with standard Ringer bicarbonate solution containing 1 mM Mg2+ presented a Pf of 223.9 ± 27.2 µm/s. When Mg2+ was not added to the bathing solution, an increase in the AVP-stimulated Pf to 363.1 ± 57.2 µm/s (P<0.05) was observed. An elevation of Mg2+ to 5 mM resulted in a decrease in Pf to 202.9 ± 12.6 µm/s (P<0.05). This decrease in the AVP-stimulated Pf at 5 mM Mg2+ persisted when the CCDs were returned to 1 mM Mg2+, Pf = 130.2 ± 20.3 µm/s, and was not normalized by the addition of 8-[4-chlorophenylthio]-adenosine 3',5'-cyclic monophosphate, a cAMP analogue, to the preparation. These data indicate that magnesium may play a modulatory role in the action of AVP on CCD osmotic water permeability, as observed in other tissues.
Resumo:
The excretion ratio of lactulose/mannitol in urine has been used to assess the extension of malabsorption and impairment of intestinal permeability. The recovery of lactulose and mannitol in urine was employed to evaluate intestinal permeability in children with and without diarrhea. Lactulose and mannitol probes were measured using high-performance liquid chromatography with pulsed amperometric detection (HPLC-PAD). Two groups of solutions containing 60 µM sugars were prepared. Group I consisted of glucosamine, mannitol, melibiose and lactulose, and group II of inositol, sorbitol, glucose and lactose. In the study of intra-experiment variation, a sample of 50 µl from each group was submitted to 4 successive determinations. The recovered amounts and retention times of each sugar showed a variation <2 and 1%, respectively. The estimated recovery was >97%. In the study of inter-experiment variation, we prepared 4 independent samples from groups I and II at the following concentrations: 1.0, 0.3, 0.1, 0.03 and 0.01 mM. The amounts of the sugars recovered varied by <10%, whereas the retention times showed an average variation <1%. The linear correlation coefficients were >99%. Retention (k'), selectivity (a) and efficiency (N) were used to assess the chromatographic conditions. All three parameters were in the normal range. Children with diarrhea presented a greater lactulose/mannitol ratio compared to children without diarrhea.
Resumo:
Although gap junction channels are still widely viewed as large, non-specific pores connecting cells, the diversity in the connexin family has led more attention to be focused on their permeability characteristics. We summarize here the current status of these investigations, both published and on-going, that reveal both charge and size selectivity between gap junction channels composed of different connexins. In particular, this review will focus on quantitative approaches that monitor the expression level of the connexins, so that it is clear that differences that are seen can be attributed to channel properties. The degree of selectivity that is observed is modest compared to other channels, but is likely to be significant for biological molecules that are labile within the cell. Of particular relevance to the in vivo function of gap junctions, recent studies are summarized that demonstrate that the connexin phenotype can control the nature of the endogenous traffic between cells, with consequent effects on biological effects of gap junctions such as tumor suppression.
Resumo:
Angiotensin-(1-7) (Ang-(1-7)) increased osmotic water permeability in the isolated toad skin, a tissue with functional properties similar to those of the distal mammalian nephron. Concentrations of 0.1 to 10 µM were effective, with a peak at 20 min. This effect was similar in magnitude to that of frog skin angiotensin II (Ang II) and oxytocin but lower than that of human Ang II and arginine-vasotocin. The AT2 angiotensin receptor antagonist PD 123319 (1.0 µM) fully inhibited the response to 0.1 µM Ang-(1-7) but had no effect on the response to Ang II at the same concentration. The specific receptor antagonist of Ang-(1-7), A-779, was ineffective in blocking the response to Ang-(1-7) and to frog skin Ang II. The AT1 receptor subtype antagonist losartan, which blocked the response to frog skin Ang II, was ineffective in blocking the response to Ang-(1-7). The present results support the view of an antidiuretic action of Ang-(1-7) in the mammalian nephron.
Resumo:
The objective of the present study was to assess intestinal permeability in patients with infection caused by Strongyloides stercoralis. Twenty-six patients (16 women and 10 men), mean age 45.9, with a diagnosis of strongyloidiasis were evaluated. For comparison, 25 healthy volunteers (18 women and 7 men), mean age 44.9, without digestive disorders or intestinal parasites served as normal controls. Intestinal permeability was measured on the basis of urinary radioactivity levels during the 24 h following oral administration of chromium-labeled ethylenediaminetetraacetic acid (51Cr-EDTA) expressed as percentage of the ingested dose. The urinary excretion of 51Cr-EDTA was significantly reduced in patients with strongyloidiasis compared to controls (1.60 ± 0.74 and 3.10 ± 1.40, respectively, P = 0.0001). Intestinal permeability is diminished in strongyloidiasis. Abnormalities in mucus secretion and intestinal motility and loss of macromolecules could explain the impaired intestinal permeability.
Resumo:
T84 is an established cell line expressing an enterocyte phenotype whose permeability properties have been widely explored. Osmotic permeability (P OSM), hydraulic permeability (P HYDR) and transport-associated net water fluxes (J W-transp), as well as short-circuit current (I SC), transepithelial resistance (R T), and potential difference (deltaV T) were measured in T84 monolayers with the following results: P OSM 1.3 ± 0.1 cm.s-1 x 10-3; P HYDR 0.27 ± 0.02 cm.s-1; R T 2426 ± 109 omega.cm², and deltaV T 1.31 ± 0.38 mV. The effect of 50 µM 5,6-dichloro-1-ethyl-1,3-dihydro-2H-benzimidazol-2-one (DCEBIO), a "net Cl- secretory agent", on T84 cells was also studied. We confirm the reported important increase in I SC induced by DCEBIO which was associated here with a modest secretory deltaJ W-transp. The present results were compared with those reported using the same experimental approach applied to established cell lines originating from intestinal and renal epithelial cells (Caco-2, LLC-PK1 and RCCD-1). No clear association between P HYDR and R T could be demonstrated and high P HYDR values were observed in an electrically tight epithelium, supporting the view that a "water leaky" barrier is not necessarily an "electrically leaky" one. Furthermore, the modest secretory deltaJ W-transp was not consistent with previous results obtained with RCCD-1 cells stimulated with vasopressin (absorptive fluxes) or with T84 cells secreting water under the action of Escherichia coli heat stable enterotoxin. We conclude that, while the presence of aquaporins is necessary to dissipate an external osmotic gradient, coupling between water and ion transport cannot be explained by a simple and common underlying mechanism.
Resumo:
The gut barrier monitors and protects the gastrointestinal tract from challenges such as microorganisms, toxins and proteins that could act as antigens. There is evidence that gut barrier dysfunction may act as a primary disease mechanism in intestinal disorders. The aim of the present study was to evaluate the barrier function towards sugars after the appropriate treatment of celiac disease and Crohn's disease patients and compare the results with those obtained with healthy subjects. Fifteen healthy volunteers, 22 celiac disease patients after 1 year of a gluten-free diet, and 31 Crohn's disease patients in remission were submitted to an intestinal permeability test with 6.0 g lactulose and 3.0 g mannitol. Six-hour urinary lactulose excretion in Crohn's disease patients was significantly higher than in both celiac disease patients (0.42 vs 0.15%) and healthy controls (0.42 vs 0.07%). Urinary lactulose excretion was significantly higher in celiac disease patients than in healthy controls (0.15 vs 0.07%). Urinary mannitol excretion in Crohn's disease patients was the same as healthy controls (21 vs 21%) and these values were significantly higher than in celiac disease patients (10.9%). The lactulose/mannitol ratio was significantly higher in Crohn's disease patients in comparison to celiac disease patients (0.021 vs 0.013) and healthy controls (0.021 vs 0.003) and this ratio was also significantly higher in celiac disease patients compared to healthy controls (0.013 vs 0.003). In spite of treatment, differences in sugar permeability were observed in both disease groups. These differences in the behavior of the sugar probes probably reflect different mechanisms for the alterations of intestinal permeability.
Resumo:
The objectives of this study were to determine the effect of tumor necrosis factor alpha (TNF-α) on intestinal epithelial cell permeability and the expression of tight junction proteins. Caco-2 cells were plated onto Transwell® microporous filters and treated with TNF-α (10 or 100 ng/mL) for 0, 4, 8, 16, or 24 h. The transepithelial electrical resistance and the mucosal-to-serosal flux rates of the established paracellular marker Lucifer yellow were measured in filter-grown monolayers of Caco-2 intestinal cells. The localization and expression of the tight junction protein occludin were detected by immunofluorescence and Western blot analysis, respectively. SYBR-Green-based real-time PCR was used to measure the expression of occludin mRNA. TNF-α treatment produced concentration- and time-dependent decreases in Caco-2 transepithelial resistance and increases in transepithelial permeability to the paracellular marker Lucifer yellow. Western blot results indicated that TNF-α decreased the expression of phosphorylated occludin in detergent-insoluble fractions but did not affect the expression of non-phosphorylated occludin protein. Real-time RT-PCR data showed that TNF-α did not affect the expression of occludin mRNA. Taken together, our data demonstrate that TNF-α increases Caco-2 monolayer permeability, decreases occludin protein expression and disturbs intercellular junctions.
Resumo:
The Caco-2 cell line has been used as a model to predict the in vitro permeability of the human intestinal barrier. The predictive potential of the assay relies on an appropriate in-house validation of the method. The objective of the present study was to develop a single HPLC-UV method for the identification and quantitation of marker drugs and to determine the suitability of the Caco-2 cell permeability assay. A simple chromatographic method was developed for the simultaneous determination of both passively (propranolol, carbamazepine, acyclovir, and hydrochlorothiazide) and actively transported drugs (vinblastine and verapamil). Separation was achieved on a C18 column with step-gradient elution (acetonitrile and aqueous solution of ammonium acetate, pH 3.0) at a flow rate of 1.0 mL/min and UV detection at 275 nm during the total run time of 35 min. The method was validated and found to be specific, linear, precise, and accurate. This chromatographic system can be readily used on a routine basis and its utilization can be extended to other permeability models. The results obtained in the Caco-2 bi-directional transport experiments confirmed the validity of the assay, given that high and low permeability profiles were identified, and P-glycoprotein functionality was established.
Resumo:
Mimic biological structures such as the cell wall of plant tissues may be an alternative to obtain biodegradable films with improved mechanical and water vapor barrier properties. This study aims to evaluate the mechanical properties and water vapor permeability (WVP) of films produced by using the solvent-casting technique from blended methylcellulose, glucomannan, pectin and gelatin. First, films from polysaccharides at pH 4 were produced. The film with the best mechanical performance (tensile strength = 72.63 MPa; elongation = 9.85%) was obtained from methylcellulose-glucomannan-pectin at ratio 1:4:1, respectively. Then, gelatin was added to this polysaccharide blend and the pH was adjusted to 4, 5 and 6. Results showed significant improvement in WVP when films were made at pH 5 and at polysaccharides/gelatin ratio of 90/10 and 10/90, reaching 0.094 and 0.118 g.mm/h.m².kPa as values, respectively. Films with the best mechanical properties were obtained from the blend of polysaccharides, whereas WVP was improved from the blend of polysaccharides and gelatin at pH 5.
Resumo:
In this study, the morphological characteristics of cocoa beverage powder granules under minimal, average, and maximal process conditions of a steam agglomerator were studied. a stereoscopic microscope coupled to a digital camera was used for the morphological analysis. The images were analyzed to obtain shape and size descriptors. aiming to evaluate the descriptors, 150 particles were analyzed. The results showed that there was no difference between the shape descriptors - compacity, circularity, roughness, and aspect ratio - in the operating conditions evaluated. It was observed that the cocoa beverage powder granules are elongated in shape. The size descriptors, area, perimeter, perimeter of convex bounding polygon, minimal and maximal Feret diameter, were different in the process conditions for the granules of size above 600 μm. as for the minimal process conditions, especially due to low solid feed rates, there is an increase in the size descriptor values. In addition, under the minimum process conditions, in which there is low solid feed rate (400g/min) for a steam pressure of 1.0 bar, it was obtained a good granular condition with retention of 81.1% of granules on sieves with aperture size between 300 and 1190 μm.