34 resultados para Steam
em Scielo Saúde Pública - SP
Resumo:
Pretreatment of lignocellulosic materials is essential for bioconversion because of the various physical and chemical barriers that greatly inhibit their susceptibility to bioprocesses such as hydrolysis and fermentation. The aim of this article is to review some of the most important pretreatment methods developed to date to enhance the conversion of lignocellulosics. Steam explosion, which precludes the treatment of biomass with high-pressure steam under optimal conditions, is presented as the pretreatment method of choice and its mode of action on lignocellulosics is discussed. The optimal pretreatment conditions for a given plant biomass are defined as those in which the best substrate for hydrolysis is obtained with the least amount of soluble sugars lost to side reactions such as dehydration. Therefore, pretreatment optimization results from a compromise between two opposite trends because hemicellulose recovery in acid hydrolysates can only be maximized at lower pretreatment severities, whereas the development of substrate accessibility requires more drastic pretreatment conditions in which sugar losses are inevitable. To account for this heterogeneity, the importance of several process-oriented parameters is discussed in detail, such as the pretreatment temperature, residence time into the steam reactor, use of an acid catalyst, susceptibility of the pretreated biomass to bioconversion, and process design.
Resumo:
Methanol steam reforming reaction was studied over Cu(5 wt.%)/CeO2 with and without the presence of Zn. The Zn addition decreased the Cu+2 reducibility and increased the oxygen mobility of ceria. The main products were CO2 and H2 with small amount of CO. Selectivity to CO decreased with the Zn addition and it was lower at lower reaction temperatures and lower space velocities. At 230 ºC and W/F MeOH = 648 g min mol-1 selectivities to H2 and to CO2 were 100% on Zn/Cu/Ce. The catalytic results indicated that CO was mainly a secondary product formed from reverse water gas shift reaction.
Resumo:
In this study, the morphological characteristics of cocoa beverage powder granules under minimal, average, and maximal process conditions of a steam agglomerator were studied. a stereoscopic microscope coupled to a digital camera was used for the morphological analysis. The images were analyzed to obtain shape and size descriptors. aiming to evaluate the descriptors, 150 particles were analyzed. The results showed that there was no difference between the shape descriptors - compacity, circularity, roughness, and aspect ratio - in the operating conditions evaluated. It was observed that the cocoa beverage powder granules are elongated in shape. The size descriptors, area, perimeter, perimeter of convex bounding polygon, minimal and maximal Feret diameter, were different in the process conditions for the granules of size above 600 μm. as for the minimal process conditions, especially due to low solid feed rates, there is an increase in the size descriptor values. In addition, under the minimum process conditions, in which there is low solid feed rate (400g/min) for a steam pressure of 1.0 bar, it was obtained a good granular condition with retention of 81.1% of granules on sieves with aperture size between 300 and 1190 μm.
Resumo:
The objective of this study was to evaluate the larvicidal activity of essential oil aqueous solutions (hydrolates) obtained by steam distillation of stalks and leaves of Croton argyrophylloides, Croton nepetaefolius, Croton sonderianus and Croton zehntneri against Aedes aegypti larvae. Twenty-five larvae of third instar were placed in plastic beckers, containing the hydrolates (50 mL), in a four repetitions scheme. Water was used as control and the number of dead larvae was counted after 24 hours. The data obtained were submitted to Variance Analysis and Tukey test. Significant differences were observed among the hydrolates from different species and from different parts of each plant (p < 0.001). The hydrolates of stalk and leaf from C. nepetaefolius and C. zehntneri and leaf hydrolate of C. argyrophylloides presented 100% mortality against larvae. The compounds present in C. zenhtneri and C. nepetaefolius are oxygenated phenylpropanoids that are more soluble in water than the monoterpenes and sesquiterpenes detected in the oils of C. argyrophylloides and C. sonderianus. This study showed that all species analyzed presented compounds with larvicidal properties, with differences between each plant parts.
Resumo:
Steam distillation of essential oils of aerial parts of Thymus capitatus and Marrubium vulgare L. collected at North cost of Egypt yielded 0.5% and 0.2%, respectively. Results of Gas chromatography-mass spectrometry analyses of the two samples identified 96.27% and 90.19% of the total oil composition for T. capitatus and M. vulgare, respectively. The two oil samples appeared dominated by the oxygenated constituents (88.22% for T. capitatus and 57.50% for M. vulgare), composed of phenols, mainly carvacrol (32.98%) and thymol (32.82%) in essential oil of T. capitatus, and thymol (34.55%) in essential oil of M. vulgare. It was evaluated the molluscicidal activity of T. capitatus and M. vulgare essential oils on adult and eggs of Biomphalaria alexandrina as well as their mosquitocidal activity on Culex pipiens. The LC50 and LC90 of T. capitatus essential oil against adult snails was 200 and 400 ppm/3hrs, respectively, while for M. vulgare it was 50 and 100 ppm/3hrs, respectively. Moreover, M. vulgare showed LC100 ovicidal activity at 200 ppm/24 hrs while T. capitatus oil showed no ovicidal activity. It was verified mosquitocidal activity, with LC50 and LC90 of 100 and 200 ppm/12hrs respectively for larvae, and 200 and 400 ppm/12hrs respectively for pupae of C. pipiens.
Resumo:
Aedes aegypti L. is the major vector of dengue fever, an endemic disease in Brazil. In an effort to find effective and affordable ways to control this mosquito, the larvicidal activities of essential oils from nine plants widely found in the Northeast of Brazil were analyzed by measurement of their LC50. The essential oils were extracted by steam distillation and their chemical composition determined by GL-chromatography coupled to mass spectroscopy. The essential oils from Cymbopogon citratus and Lippia sidoides, reported in the literature to have larvicidal properties against A. aegypti, were used for activity comparison. The results show that Ocimum americanum and Ocimum gratissimum have LC50 of 67 ppm and 60 ppm respectively, compared to 63 ppm for L. sidoides and 69 ppm for C. citratus. These results suggest a potential utilization of the essential oil of these two Ocimum species for the control of A. aegypti.
Resumo:
OBJETIVO: Correlacionar os achados de ressonância magnética convencional, difusão e espectroscopia de prótons nos meduloblastomas, e compará-los aos dados da literatura. MATERIAIS E MÉTODOS: Análise retrospectiva de exames de ressonância magnética pré-operatórios de nove pacientes na faixa pediátrica com diagnóstico histológico de meduloblastoma (oito desmoplásicos e um de células gigantes). Foram considerados dados demográficos e características do tumor como localização, característica morfológica, intensidade de sinal, realce, disseminação e achados na difusão e espectroscopia. RESULTADOS: Na maioria dos casos os tumores apresentaram epicentro no vermis cerebelar (77,8%), sendo predominantemente sólido (88,9%), com hipossinal nas seqüências ponderadas em T1 e iso/hipersinal nas seqüências ponderadas em T2 e FLAIR, realce heterogêneo (100%), sinais de disseminação/extensão tumoral (77,8%) e restrição à movimentação das moléculas de água (100%). A espectroscopia de prótons pela técnica STEAM (n = 6) demonstrou redução da relação Naa/Cr (83,3%) e aumento de Co/Cr (100%) e mI/Cr (66,7%), e pela técnica PRESS (n = 7) evidenciou pico de lactato (57,1%). CONCLUSÃO: O conjunto dos achados macroscópicos obtidos pela ressonância magnética, somado às características bioquímicas dos meduloblastomas, têm sido úteis na tentativa de diferenciação entre os principais tumores da fossa posterior.
Resumo:
The catalytic dehydrogenation of ethylbenzene in presence of steam is the main commercial route to produce styrene. The industrial catalysts are potassium- and chromia-doped hematite which show low surface areas leading to bad performance and short life. In order to develop catalysts with high areas, the effect of beryllium on the textural properties and on the catalytic performance of this iron oxide was studied. The influence of the amount of the dopant, the starting material and the calcination temperature were also studied. In sample preparations, iron and beryllium salts (nitrate or sulfate) were hydrolyzed with ammonia and then calcinated. The experiments followed a factorial design with two variables in two levels (Fe/Be= 3 and 7; calcination temperature= 500 and 700ºC). Solids without any dopant were also prepared. Samples were characterized by elemental analysis, infrared spectroscopy, surface area and porosity measurements, X-ray diffraction, DSC and TG. The catalysts were tested in a microreactor at 524ºC and 1 atm, by using a mole ratio of steam/ ethylbenzene=10. The selectivity was measured by monitoring styrene, benzene and toluene formation. It was found that the effect of beryllium on the characteristics of hematite and on its catalytic performance depends on the starting material and on the amount of dopant. Surface areas increased due to the dopant as well as the nature of the precursor; samples produced by beryllium sulfate showed higher areas. Beryllium-doped solids showed a higher catalytic activity when compared to pure hematite, but no significant influence of the anion of starting material was noted. It can be concluded that beryllium acts as both textural and structural promoter. Samples with Fe/Be= 3, heated at 500ºC, lead to the highest conversion and were the most selective. However, catalysts prepared from beryllium sulfate are the most promising to ethylbenzene dehydrogenation due to their high surface area which could lead to a longer life.
Resumo:
Mo-promoted Ni/Al2O3 catalysts for the methane steam reforming reaction were studied in this work. The Ni/Al2O3 catalysts were prepared by precipitation and molibdenum was added by impregnation up to 2%wt. The solids were tested using a micro-reactor under two H2Ov/C conditions and were characterized by ICP-OES, XRD, N2 adsoption, H2 chemisorption and TPR. NiO and NiAl2O4 phases were observed and the metallic area decreased with the increase of the Mo content. From the catalytic tests high stability was verified for H2Ov/C=4.0. On the other hand, only the catalyst containing 0,05% Mo stayed stable during 30 hours of the test at H2Ov/C=2.0.
Resumo:
Ethylbenzene dehydrogenation in the presence of steam is the main commercial route to produce styrene. The industrial catalyst is chromium and potassium-doped hematite, which easily deactivates with time due to potassium loss. In order to find non-toxic and potassium free catalysts, the promoter action of zinc on hematite was studied in this work. It was found that zinc acts as structural promoter by stabilizing the Fe3+ species (active phase) as maghemite. Although it decreases the specific surface area, it increases four times the catalytic activity as compared to hematite.
Resumo:
The development of cobalt catalysts to produce hydrogen from ethanol is the goal of this investigation. Co/Al2O3 catalysts were prepared by impregnation and characterized by atomic absorption, nitrogen adsorption, X-ray diffraction, Raman spectroscopy, temperature programmed reduction and carbon analysis. The catalysts contained Co3O4 oxide and Co3+ and Co2+ species interacting with alumina. The cobalt load affects the crystal size and the crystalline structure and higher Co loads influence the reaction mechanism, changing the selectivity of the catalysts, decreasing the amount of CO produced and avoiding the formation of products catalyzed by the support. The ethanol conversion was 50-70% with 10-<1% of CO in the hydrogen.
Resumo:
Several extraction procedures are described for the determination of exchangeable and fixed ammonium, nitrate + nitrite, total exchangeable nitrogen and total nitrogen in certified reference soils and petroleum reservoir rock samples by steam distillation and indophenol method. After improvement of the original distillation system, an increase in worker safety, a reduction in time consumption, a decrease of 73% in blank value and an analysis without ammonia loss, which could possibly occur, were achieved. The precision (RSD < 8%, n = 3) and the detection limit (9 mg kg-1 NH4+-N) are better than those of published procedures.
Resumo:
A method is proposed for the determination of the moisture content of aromatic plants. This method is based on the co-distillation of the starting material in a modified Clevenger apparatus with four organic solvents (toluene, cyclohexane, dichloromethane and carbon tetrachloride). The results were compared with those obtained by oven drying at 105 ºC and steam distillation of the essential oil. The efficiencies of the methods were shown to be equivalent. The solvent distillation method was more practical, especially with respect to operating time (2 h).
Resumo:
Three Croton species, C. zenhtneri, C. nepetaefolius and C. argyrophylloides, were collected at two different times, 6:00 and 13:00 h, their essential oils were extracted by steam distillation and analyzed by gas Chromatography / Mass Spectrometry. The percentage yield of oil constituents changes along the day. The oils were submitted to the antioxidant test thiobarbituric acid reactive species, using BHT and a-tocoferol as the reference compounds. All oils exhibited good antioxidant activities. In general, C. zenhtneri and C. argyrophylloides essential oils showed higher antioxidant activity than C. nepetaefolius.
Resumo:
Leaves of Lippia alba were submitted to six different drying treatments, using air at ambient temperature and heated up to 80 °C. The essential oil was extracted by steam distillation and analyzed by GC-MS. For the dried leaves, the oil content was reduced by 12 to 17% when compared with the fresh plant (0.66%). The major oil component was citral, representing 76% for the fresh plant, and varying from 82 to 84% for the dried material. These results showed that L. alba can be submitted to a drying process of up to 80 ºC without degradation and/or loss of the major, [LC1] active component.