114 resultados para Static volumetric method
em Scielo Saúde Pública - SP
Resumo:
The most sold and/or prescribed liquid oral medicines for children in Tubarão, Southern Brazil, were assessed. Their sugar concentration was tested and compared to those in their directions for use. All pharmacies and pediatricians working in the city were visited by a previously trained interviewer. Pre-tested questionnaires were applied in order to assess the most sold pediatric as well as the most prescribed pediatric liquid oral medicines. Three samples of each medicine were analyzed by Lane-Eynon general volumetric method. Among the 14 most sold/prescribed medicines only four did not have sugar contents (analgesic, cortisone, and syrups). Sugar concentration ranged from 8.59 g/100 g of drug (SD=0.29 g/100 g) to 67.0 g/100 g of drug (SD=6.07 g/100 g). Only 50.0% of the total medicines that presented sugar in their ingredients showed this information in their directions.
Resumo:
Soil can be either source or sink of methane (CH4), depending on the balance between methanogenesis and methanotrophy, which are determined by pedological, climatic and management factors. The objective of this study was to assess the impact of drainage of a highland Haplic Histosol on CH4 fluxes. Field research was carried out in Ponta Grossa (Paraná, Brazil) based on the measurement of CH4 fluxes by the static chamber method in natural and drained Histosol, over one year (17 sampling events). The natural Histosol showed net CH4 eflux, with rates varying from 238 µg m-2 h-1 CH4, in cool/cold periods, to 2,850 µg m-2 h-1 CH4, in warm/hot periods, resulting a cumulative emission of 116 kg ha-1 yr-1 CH4. In the opposite, the drained Histosol showed net influx of CH4 (-39 to -146 µg m-2 h-1), which resulted in a net consumption of 9 kg ha-1 yr-1 CH4. The main driving factors of CH4 consumption in the drained soil were the lowering of the water-table (on average -57 cm, vs -7 cm in natural soil) and the lower water content in the 0-10 cm layer (average of 5.5 kg kg-1, vs 9.9 kg kg-1 in natural soil). Although waterlogged Histosols of highland areas are regarded as CH4 sources, they fulfill fundamental functions in the ecosystem, such as the accumulation of organic carbon (581 Mg ha-1 C to a depth of 1 m) and water (8.6 million L ha-1 = 860 mm to a depth of 1 m). For this reason, these soils must not be drained as an alternative to mitigate CH4 emission, but effectively preserved.
Resumo:
In the present work a polyurethane polymer derived from castor oil was used as stationary phase for capillary gas chromatography. The polymer was obtained by reaction of hydroxylated compound and isocynate (NCO), forming urethane. Columns of 7 m x 0,25 mm were then coated with this stationary phase (film thickness of 0,25 µm) using static coating method. The Grob test was also performed. Samples of essential oil of the Aniba duckei Korstermans was then analysed in POLYH4-MD capillary column in order to evaluate its chromatographic perfomance. The linalool was found to be the major component and has been used as compound of departure for many important syntheses. Results show that the experimental columns give higher resolution and can be employed for analysis of essentials oils.
Resumo:
Chitosan was acetylated during 2, 5 and 10h and physical gels were obtained at different polymer concentrations in N,N-dimethylacetamide containing 5% of LiCl. Acetylation was confirmed by infrared spectroscopy and 13C NMR, and degrees of acetylation in the range of 0.82-0.91 were determined by NMR. The O-acetylation degree (0.12-0.15) was exclusively determined by a volumetric method. Rheological studies showed that the storage modulus values were smaller for the more acetylated samples and increased with the temperature and the polymer concentration. All the gels presented storage modulus superior to loss modulus, evidencing more elastic than viscous characteristics. The results obtained in this work suggest a gelation process based on a balance between O and N-acetylation and intermolecular bonds.
Resumo:
Reported neuroimaging studies have shown functional and morphological changes of temporal lobe structures in panic patients, but only one used a volumetric method. The aim of the present study was to determine the volume of temporal lobe structures in patients with panic disorder, measured by magnetic resonance imaging. Eleven panic patients and eleven controls matched for age, sex, handedness, socioeconomic status and years of education participated in the study. The mean volume of the left temporal lobe of panic patients was 9% smaller than that of controls (t21 = 2.37, P = 0.028). In addition, there was a trend (P values between 0.05 and 0.10) to smaller volumes of the right temporal lobe (7%, t21 = 1.99, P = 0.06), right amygdala (8%, t21 = 1.83, P = 0.08), left amygdala (5%, t21 = 1.78, P = 0.09) and left hippocampus (9%, t21 = 1.93, P = 0.07) in panic patients compared to controls. There was a positive correlation between left hippocampal volume and duration of panic disorder (r = 0.67, P = 0.025), with recent cases showing more reduction than older cases. The present results show that panic patients have a decreased volume of the left temporal lobe and indicate the presence of volumetric abnormalities of temporal lobe structures.
Resumo:
Moisture equilibrium data of mango pulp were determined using the static gravimetric method. Adsorption and desorption isotherms were obtained in the range of 30-70 ºC, to water activities (a w) from 0.02 to 0.97. The application of the GAB model to the experimental results, using direct nonlinear regression analysis, provided agreement between experimental and calculated values. The net isosteric heat of sorption was estimated from equilibrium sorption data, using the Clausius-Clapeyron equation. Isosteric heats of sorption were found to increase with increasing temperature and could be well adjusted by an exponential relationship. The enthalpy-entropy compensation theory was applied to sorption isotherms and plots of deltaH versus deltaS provided the isokinetic temperatures, indicating an enthalpy controlled sorption process.
Resumo:
Moisture desorption isotherms of fresh and heat blanched pumpkins (Cucurbita moschata) were determined at three temperatures (30, 50 and 70 °C), using the standard, static-gravimetric method. The GAB, Oswin, BET, Halsey, and Henderson models were tested and, with the exception of the Henderson model, showed satisfactory fits to the experimental data. The GAB model was used to analyze the fitting ability to describe the isotherm type. The shape of the desorption isotherms of fresh and blanched pumpkin at 30 and 50 °C was intermediate to types II and III, and at 70 °C it was of type II for the blanched pumpkin and close to type II for the fresh sample. The influence of blanching on the decrease in equilibrium moisture was very small compared to the fresh samples and it was related to the loss of soluble solids during the pre-treatment. The isosteric heat of sorption measures indicated that a larger amount of heat was required to remove the water from the fresh samples than from the blanched ones.
Resumo:
The Jackfruit tree is one of the most significant trees in tropical home gardens and perhaps the most widespread and useful tree in the important genus Artocarpus. The fruit is susceptible to mechanical and biological damage in the mature state, and some people find the aroma of the fruit objectionable, particularly in confined spaces. The dehydration process could be an alternative for the exploitation of this product, and the relationship between moisture content and water activity provides useful information for its processing and storage. The aim of this study was to determine the thermodynamic properties of the water sorption of jackfruit (Artocarpus heterophyllus Lam.) as a function of moisture content. Desorption isotherms of the different parts of the jackfruit (pulp, peduncle, mesocarp, peel, and seed) were determined at four different temperatures (313.15, 323.15, 333.15, and 343.15 K) in a water activity range of 0.02-0.753 using the static gravimetric method. Theoretical and empirical models were used to model the desorption isotherms. An analytical solution of the Clausius-Clapeyron equation was proposed to calculate the isosteric heat of sorption, the differential entropy, and Gibbs' free energy using the Guggenhein-Anderson-de Boer and Oswin models considering the effect of temperature on the hygroscopic equilibrium.
Resumo:
The equilibrium moisture content for adsorption and desorption isotherms of mango skin was determined using the static gravimetric method at temperatures of 20, 26, 33, 38 and 44 oC in the 0.056 to 0.873 water activity range. Both sorption curves show a decrease in equilibrium moisture content as the temperature increasing. The hysteresis effect was observed at constant water activity. The Guggenheim, Anderson, and de Boer (GAB) model presented the best fitting accuracy among a group of models and was used to determine the thermodynamic properties of water sorption. Integral enthalpy and integral entropy areas showed inverted values for the adsorption and desorption isotherms over the wide range of water activity studied. These values confirm, in energetic terms, the difference between adsorption and desorption isotherms observed in the hysteresis phenomenon. Finally, the Gibbs free energy revealed that the sorption process was spontaneous for both sorption isotherms.
Resumo:
A large variety of techniques have been used to measure soil CO2 released from the soil surface, and much of the variability observed between locations must be attributed to the different methods used by the investigators. Therefore, a minimum protocol of measurement procedures should be established. The objectives of this study were (a) to compare different absorption areas, concentrations and volumes of the alkali trapping solution used in closed static chambers (CSC), and (b) to compare both, the optimized alkali trapping solution and the soda-lime trapping using CSC to measure soil respiration in sugarcane areas. Three CO2 absorption areas were evaluated (7; 15 and 20 % of the soil emission area or chamber); two volumes of NaOH (40 and 80 mL) at three concentrations (0.1, 0.25 and 0.5 mol L-1). Three different types of alkaline traps were tested: (a), 80 mL of 0.5 mol L-1 NaOH in glass containers, absorption area 15 % (V0.5); (b) 40 mL of 2 mol L-1 NaOH retained in a sponge, absorption area 80 % (S2) and (c) 40 g soda lime, absorption area 15 % (SL). NaOH concentrations of 0.5 mol L-1 or lower underestimated the soil CO2-C flux or CO2 flux. The lower limit of the alkali trap absorption area should be a minimum of 20 % of the area covered by the chamber. The 2 mol L-1 NaOH solution trap (S2) was the most efficient (highest accuracy and highest CO2 fluxes) in measuring soil respiration.
Resumo:
Diabetic neuropathy is an important complication of the disease, responsible for ulceration and amputation of the foot. Prevention of these problems is difficult mainly because there is no method to correctly access sensibility on the skin of the foot. The introduction of the Pressure-Specified Sensory Device (PSSD TM) in the last decade made possible the measurement of pressure thresholds sensed by the patient, such as touch, both static and in movement, on a continuous scale. This paper is the first in Brazil to report the use of this device to measure cutaneous sensibility in 3 areas of the foot: the hallux pulp, the calcaneus, and the dorsum, which are territories of the tibial and fibular nerves. METHOD: Non-diabetic patients were measured as controls, and 2 groups of diabetic patients - with and without ulcers - were compared. The PSSD TM was used to test the 3 areas described above. The following were evaluated: 1 PS (1-point static), 1 PD (1-point dynamic), 2 PS (2-points static), 2 PD (2-points dynamic). RESULTS: The diabetic group had poorer sensibility compared to controls and diabetics with ulcers had poorer sensibility when compared to diabetics without ulcers. The differences were statistically significant (P <.001). CONCLUSION: Due to the small number of patients compared, the results should be taken as a preliminary report.
Resumo:
Volumetric soil water content (theta) can be evaluated in the field by direct or indirect methods. Among the direct, the gravimetric method is regarded as highly reliable and thus often preferred. Its main disadvantages are that sampling and laboratory procedures are labor intensive, and that the method is destructive, which makes resampling of a same point impossible. Recently, the time domain reflectometry (TDR) technique has become a widely used indirect, non-destructive method to evaluate theta. In this study, evaluations of the apparent dielectric number of soils (epsilon) and samplings for the gravimetrical determination of the volumetric soil water content (thetaGrav) were carried out at four sites of a Xanthic Ferralsol in Manaus - Brazil. With the obtained epsilon values, theta was estimated using empirical equations (thetaTDR), and compared with thetaGrav derived from disturbed and undisturbed samples. The main objective of this study was the comparison of thetaTDR estimates of horizontally as well as vertically inserted probes with the thetaGrav values determined by disturbed and undisturbed samples. Results showed that thetaTDR estimates of vertically inserted probes and the average of horizontally measured layers were only slightly and insignificantly different. However, significant differences were found between the thetaTDR estimates of different equations and between disturbed and undisturbed samples in the thetaGrav determinations. The use of the theoretical Knight et al. model, which permits an evaluation of the soil volume assessed by TDR probes, is also discussed. It was concluded that the TDR technique, when properly calibrated, permits in situ, nondestructive measurements of q in Xanthic Ferralsols of similar accuracy as the gravimetric method.
Resumo:
Studies testing the High Energy Moisture Characteristic (HEMC) technique in tropical soils are still incipient. By this method, the effects of different management systems can be evaluated. This study investigated the aggregation state of an Oxisol under coffee with Brachiaria between crop rows and surface-applied gypsum rates using HEMC. Soil in an experimental area in the Upper São Francisco region, Minas Gerais, was studied at depths of 0.05 and 0.20 m in coffee rows. The treatments consisted of 0, 7, and 28 Mg ha-1 of agricultural gypsum rates distributed on the soil surface of the coffee rows, between which Brachiaria was grown and periodically cut, and compared with a treatment without Brachiaria between coffee rows and no gypsum application. To determine the aggregation state using the HEMC method, soil aggregates were placed in a Büchner funnel (500 mL) and wetted using a peristaltic pump with a volumetric syringe. The wetting was applied increasingly at two pre-set speeds: slow (2 mm h-1) and fast (100 mm h-1). Once saturated, the aggregates were exposed to a gradually increasing tension by the displacement of a water column (varying from 0 to 30 cm) to obtain the moisture retention curve [M = f (Ψ) ], underlying the calculation of the stability parameters: modal suction, volume of drainable pores (VDP), stability index (slow and fast), VDP ratio, and stability ratio. The HEMC method conferred sensitivity in quantifying the aggregate stability parameters, and independent of whether gypsum was used, the soil managed with Brachiaria between the coffee rows, with regular cuts discharged in the crop row direction, exhibited a decreased susceptibility to disaggregation.
Resumo:
ABSTRACT Particle density, gravimetric and volumetric water contents and porosity are important basic concepts to characterize porous systems such as soils. This paper presents a proposal of an experimental method to measure these physical properties, applicable in experimental physics classes, in porous media samples consisting of spheres with the same diameter (monodisperse medium) and with different diameters (polydisperse medium). Soil samples are not used given the difficulty of working with this porous medium in laboratories dedicated to teaching basic experimental physics. The paper describes the method to be followed and results of two case studies, one in monodisperse medium and the other in polydisperse medium. The particle density results were very close to theoretical values for lead spheres, whose relative deviation (RD) was -2.9 % and +0.1 % RD for the iron spheres. The RD of porosity was also low: -3.6 % for lead spheres and -1.2 % for iron spheres, in the comparison of procedures – using particle and porous medium densities and saturated volumetric water content – and monodisperse and polydisperse media.
Resumo:
A simple and rapid precipitation titration method was developed and validated to determine sulfate ion content in indinavir sulfate raw material. 0.1 mol L-1 lead nitrate volumetric solution was used as titrant employing potentiometric endpoint determination using a lead-specific electrode. The United States Pharmacopoeia Forum indicates a potentiometric method for sulfate ion quantitation using 0.1 mol L-1 lead perchlorate as titrant. Both methods were validated concerning linearity, precision and accuracy, yielding good results. The sulfate ion content found by the two validated methods was compared by the statistical t-student test, indicating that there was no statistically significant difference between the methods.