6 resultados para Spheroid
em Scielo Saúde Pública - SP
Resumo:
Current therapy for pancreatic cancer is multimodal, involving surgery and chemotherapy. However, development of pancreatic cancer therapies requires a thorough evaluation of drug efficacy in vitro before animal testing and subsequent clinical trials. Compared to two-dimensional culture of cell monolayer, three-dimensional (3-D) models more closely mimic native tissues, since the tumor microenvironment established in 3-D models often plays a significant role in cancer progression and cellular responses to the drugs. Accumulating evidence has highlighted the benefits of 3-D in vitro models of various cancers. In the present study, we have developed a spheroid-based, 3-D culture of pancreatic cancer cell lines MIAPaCa-2 and PANC-1 for pancreatic drug testing, using the acid phosphatase assay. Drug efficacy testing showed that spheroids had much higher drug resistance than monolayers. This model, which is characteristically reproducible and easy and offers rapid handling, is the preferred choice for filling the gap between monolayer cell cultures and in vivo models in the process of drug development and testing for pancreatic cancer.
Resumo:
Munduruku gen. nov. is proposed for the type species Munduruku bicoloratum sp. nov., from Juruti and Santarém, Pará, Brazil. The main diagnostic character of Munduruku gen. nov. is the presence of a subapical, lanceolate keel on the male palpal bulb, which is unique among the basal taxa of Theraphosinae with type III-IV urticating setae. The female spermathecae consist of two spheroid receptacles with funnel-shaped necks, each of which bears a sclerotized area. In both sexes, the abdomen is remarkably patterned, an uncommon feature in adults of New World theraphosids. Both the bulbus lanceolate keel and the abdominal color pattern are hypothesized as synapomorphies of the genus.
Resumo:
The gall inducer Clusiamyia nitida Maia, 1996 (Diptera, Cecidomyiidae) often infests the shrub Clusia lanceolata (Camb.) (Clusiaceae) in the Neotropical vegetation of restinga of Rio de Janeiro State, Brazil. Leaves of Clusia lanceolata host up to 20 spheroid galls and show variation in their shape. We aimed to evaluate the effect of gall's intensity on leaves of Clusia lanceolata, and the extension of gall's impact on adjacent non-galled leaves. We analyzed the effect of the number of galls on leaf area, biomass, specific area and leaf appearance from 509 leaves of 14 individual plants. The results showed that differences of individual plants, pairs of leaves, and gall presence were responsible for more then 90% of variation on infested leaves. Variation on parasitic intensity level created differences in leaf response. Under moderate gall attack characterized by scattered galls on a leaf, the increase of the number of galls caused an increase of leaf biomass and area, and a decrease of specific area. The specific area was smaller also under high attack intensity, characterized by coalescent galls on a leaf. In those cases of extremely high parasitic intensity, galled leaves became deformed and the surface area was severely reduced. Leaf deformation due to gall attack led to early leaf abscission, indicated by the 90% of deformed leaves found in the youngest leaf pair of the branch. There was insufficient evidence that the impact of galls on leaf morpho-physiological parameters extended beyond the attacked leaves, because ungalled leaves did not change significantly when their opposite leaf had been galled.
Resumo:
Diversity of gall-inducing insects in the tropical dry forest (caatinga) of Pernambuco. We report on the richness of galling insects in the vegetation of caatinga of Pernambuco state, Brazil. We recorded 64 different types of galls collected primarily from leaves and stems of 48 species of host plants belonging to 17 families and 31 genera. The most common gall morphological types were spheroid and discoid, glabrous, predominantly green and with one chamber. The main gall inducing taxon was the Cecidomyiidae (Diptera). The results of this study contribute to existing knowledge of galling insect and host-plant diversity in caatinga.
Resumo:
Samples of healthy leaves and galls induced by Schizomyia macrocapillata Maia on Bauhinia brevipes Vogel were submitted to routine techniques to investigate gall anatomy and development. Pouch galls are induced on the abaxial surface of unfolded immature leaves, and become spheroid with long reddish hairs covering their external surface. Galls occur isolated or coalesce when in larger numbers. Gall development was divided into six phases: 1) initiation; 2) tissue re-arrangement; 3) tissue differentiation; 4) maturation; 5) growth phase; and 6) dehiscence. This last phase corresponds to gall senescence, which takes place just after the larva exits the chamber to pupate. An important developmental phase of tissue reorientation was recorded after the initiation phase. The presence of hyphae close to the covering layer characterizes this gall as an ambrosia gall and the feeding mode of the gall migde is discussed. Few hyphae were found during the first developmental phases and fungi may play an important role during gall morphogenesis. Neoformed trichomes may provide not only photoprotection but also protection against natural enemies and water loss. The neoformation of phloematic bundles suggests host manipulation and indicates the establishment of a deviating sink.
Resumo:
Cell fate decisions are governed by a complex interplay between cell-autonomous signals and stimuli from the surrounding tissue. In vivo cells are connected to their neighbors and to the extracellular matrix forming a complex three-dimensional (3-D) microenvironment that is not reproduced in conventional in vitro systems. A large body of evidence indicates that mechanical tension applied to the cytoskeleton controls cell proliferation, differentiation and migration, suggesting that 3-D in vitro culture systems that mimic the in vivo situation would reveal biological subtleties. In hematopoietic tissues, the microenvironment plays a crucial role in stem and progenitor cell survival, differentiation, proliferation, and migration. In adults, hematopoiesis takes place inside the bone marrow cavity where hematopoietic cells are intimately associated with a specialized three 3-D scaffold of stromal cell surfaces and extracellular matrix that comprise specific niches. The relationship between hematopoietic cells and their niches is highly dynamic. Under steady-state conditions, hematopoietic cells migrate within the marrow cavity and circulate in the bloodstream. The mechanisms underlying hematopoietic stem/progenitor cell homing and mobilization have been studied in animal models, since conventional two-dimensional (2-D) bone marrow cell cultures do not reproduce the complex 3-D environment. In this review, we will highlight some of the mechanisms controlling hematopoietic cell migration and 3-D culture systems.