14 resultados para Spatial working memory
em Scielo Saúde Pública - SP
Resumo:
Objective This study describes the development of two updating measures of working memory (WM): Letter Updating Test (LUT) and Word Updating Test (WUT). Methods In stage 1, items were created and the instruments were assessed by experts and laymen. In stage 2, tests were given to 15 patients with schizophrenia and 15 paired controls. All were able to understand and respond to the instruments. In stage 3, 141 patients with schizophrenia and 119 healthy controls aged 18 to 60 took part; they were assessed on WM, processing speed (PS) and functional outcome. Results The results showed adequate rates of internal consistency for both measures developed, for both the total sample and each group separately, as well as evidence of convergent validity, discriminant validity and sensitivity to differentiate performance among the groups. Principal component analysis yielded two components, one for updating tests and other for PS measures, indicating factorial validity. Positive and significant, yet low, correlations were found with functionality measures. Conclusion These results provide adequate psychometric parameters for the measures developed, applicable to cognitive research settings in schizophrenia.
Resumo:
The interactions between the median raphe nucleus (MRN) serotonergic system and the septohippocampal muscarinic cholinergic system in the modulation of immediate working memory storage performance were investigated. Rats with sham or ibotenic acid lesions of the MRN were bilaterally implanted with cannulae in the dentate gyrus of the hippocampus and tested in a light/dark step-through inhibitory avoidance task in which response latency to enter the dark compartment immediately after the shock served as a measure of immediate working memory storage. MRN lesion per se did not alter response latency. Post-training intrahippocampal scopolamine infusion (2 and 4 µg/side) produced a more marked reduction in response latencies in the lesioned animals compared to the sham-lesioned rats. Results suggest that the immediate working memory storage performance is modulated by synergistic interactions between serotonergic projections of the MRN and the muscarinic cholinergic system of the hippocampus.
Resumo:
People who suffer from traumatic brain injury (TBI) often experience cognitive deficits in spatial reference and working memory. The possible roles of cyclooxygenase-1 (COX-1) in learning and memory impairment in mice with TBI are far from well known. Adult mice subjected to TBI were treated with the COX-1 selective inhibitor SC560. Performance in the open field and on the beam walk was then used to assess motor and behavioral function 1, 3, 7, 14, and 21 days following injury. Acquisition of spatial learning and memory retention was assessed using the Morris water maze on day 15 post-TBI. The expressions of COX-1, prostaglandin E2 (PGE2), interleukin (IL)-6, brain-derived neurotrophic factor (BDNF), platelet-derived growth factor BB (PDGF-BB), synapsin-I, and synaptophysin were detected in TBI mice. Administration of SC560 improved performance of beam walk tasks as well as spatial learning and memory after TBI. SC560 also reduced expressions of inflammatory markers IL-6 and PGE2, and reversed the expressions of COX-1, BDNF, PDGF-BB, synapsin-I, and synaptophysin in TBI mice. The present findings demonstrated that COX-1 might play an important role in cognitive deficits after TBI and that selective COX-1 inhibition should be further investigated as a potential therapeutic approach for TBI.
Resumo:
This article is a transcription of an electronic symposium in which some active researchers were invited by the Brazilian Society for Neuroscience and Behavior (SBNeC) to discuss the last decade's advances in neurobiology of learning and memory. The way different parts of the brain are recruited during the storage of different kinds of memory (e.g., short-term vs long-term memory, declarative vs procedural memory) and even the property of these divisions were discussed. It was pointed out that the brain does not really store memories, but stores traces of information that are later used to create memories, not always expressing a completely veridical picture of the past experienced reality. To perform this process different parts of the brain act as important nodes of the neural network that encode, store and retrieve the information that will be used to create memories. Some of the brain regions are recognizably active during the activation of short-term working memory (e.g., prefrontal cortex), or the storage of information retrieved as long-term explicit memories (e.g., hippocampus and related cortical areas) or the modulation of the storage of memories related to emotional events (e.g., amygdala). This does not mean that there is a separate neural structure completely supporting the storage of each kind of memory but means that these memories critically depend on the functioning of these neural structures. The current view is that there is no sense in talking about hippocampus-based or amygdala-based memory since this implies that there is a one-to-one correspondence. The present question to be solved is how systems interact in memory. The pertinence of attributing a critical role to cellular processes like synaptic tagging and protein kinase A activation to explain the memory storage processes at the cellular level was also discussed.
Resumo:
According to the working memory model, the phonological loop is the component of working memory specialized in processing and manipulating limited amounts of speech-based information. The Children's Test of Nonword Repetition (CNRep) is a suitable measure of phonological short-term memory for English-speaking children, which was validated by the Brazilian Children's Test of Pseudoword Repetition (BCPR) as a Portuguese-language version. The objectives of the present study were: i) to investigate developmental aspects of the phonological memory processing by error analysis in the nonword repetition task, and ii) to examine phoneme (substitution, omission and addition) and order (migration) errors made in the BCPR by 180 normal Brazilian children of both sexes aged 4-10, from preschool to 4th grade. The dominant error was substitution [F(3,525) = 180.47; P < 0.0001]. The performance was age-related [F(4,175) = 14.53; P < 0.0001]. The length effect, i.e., more errors in long than in short items, was observed [F(3,519) = 108.36; P < 0.0001]. In 5-syllable pseudowords, errors occurred mainly in the middle of the stimuli, before the syllabic stress [F(4,16) = 6.03; P = 0.003]; substitutions appeared more at the end of the stimuli, after the stress [F(12,48) = 2.27; P = 0.02]. In conclusion, the BCPR error analysis supports the idea that phonological loop capacity is relatively constant during development, although school learning increases the efficiency of this system. Moreover, there are indications that long-term memory contributes to holding memory trace. The findings were discussed in terms of distinctiveness, clustering and redintegration hypotheses.
Resumo:
Within the framework of the working memory model proposed by A. Baddeley and G. Hitch, a dual-task paradigm has been suggested to evaluate the capacity to perform simultaneously two concurrent tasks. This capacity is assumed to reflect the functioning of the central executive component, which appears to be impaired in patients with dysexecutive syndrome. The present study extends the investigation of an index ("mu"), which is supposed to indicate the capacity of coordination of concurrent auditory digit span and tracking tasks, by testing the influence of training on the performance in the dual task. The presentation of the same digit sequence lists or always-different lists did not differently affect the performance. The span length affected the mu values. The improved performance in the tasks under the dual condition closely resembled the improvement in the single-task performance. So, although training improved performance in the single and dual conditions, especially for the tracking component, the mu values remained stable throughout the sessions when the single tasks were performed first. Conversely, training improved the capacity of dual-task coordination throughout the sessions when dual task was performed first, addressing the issue of the contribution of the within-session practice to the mu index.
Resumo:
The measure "mu", proposed as an index of the ability to coordinate concurrent box-crossing (BC) and digit-span (DS) tasks in the dual task (DT), should reflect the capacity of the executive component of the working memory system. We investigated the effect of practice in BC and of a change in the digit span on mu by adding previous practice trials in BC and diminishing, maintaining or increasing the digit sequence length. The mu behavior was evaluated throughout three trials of the test. Reported strategies in digit tasks were also analyzed. Subjects with diminished span showed the best performance in DT due to a stable performance in DS and BC in the single- and dual-task conditions. These subjects also showed a more stable performance throughout trials. Subjects with diminished span tended to employ effortless strategies, whereas subjects with increased span employed effort-requiring strategies and showed the lowest means of mu. Subjects with initial practice trials showed the best performance in BC and the most differentiated performance between the single- and dual-task conditions in BC. The correlation coefficient between the mu values obtained in the first and second trials was 0.814 for subjects with diminished span and practice trials in BC. It seems that the within-session practice in BC and the performance variability in DS affect the reliability of the index mu. To control these factors we propose the introduction of previous practice trials in BC and a modification of the current method to determine the digit sequence length. This proposal should contribute to the development of a more reliable method to evaluate the executive capacity of coordination in the dual-task paradigm.
Resumo:
The phonological loop is a component of the working memory system specifically involved in the processing and manipulation of limited amounts of information of a sound-based phonological nature. Phonological memory can be assessed by the Children's Test of Nonword Repetition (CNRep) in English speakers but not in Portuguese speakers due to phonotactic differences between the two languages. The objectives of the present study were: 1) to develop the Brazilian Children's Test of Pseudoword Repetition (BCPR), a Portuguese version of the CNRep, and 2) to validate the BCPR by correlation with the Auditory Digit Span Test from the Stanford-Binet Intelligence Scale. The BCPR and Digit Span were assessed in 182 children aged 4-10 years, 84 from Minas Gerais State (42 from a rural region) and 98 from the city of São Paulo. There are subject age and word length effects causing repetition accuracy to decline as a function of the number of syllables of the pseudowords. Correlations between BCPR and Digit Span forward (r = 0.50; P <= 0.01) and backward (r = 0.43; P <= 0.01) were found, and partial correlation indicated that higher BCPR scores were associated with higher Digit Span scores. BCPR appears to depend more on schooling, while Digit Span was more related to development. The results demonstrate that the BCPR is a reliable measure of phonological working memory, similar to the CNRep.
Resumo:
The serious neuropsychological repercussions of hepatic encephalopathy have led to the creation of several experimental models in order to better understand the pathogenesis of the disease. In the present investigation, two possible causes of hepatic encephalopathy, cholestasis and portal hypertension, were chosen to study the behavioral impairments caused by the disease using an object recognition task. This working memory test is based on a paradigm of spontaneous delayed non-matching to sample and was performed 60 days after surgery. Male Wistar rats (225-250 g) were divided into three groups: two experimental groups, microsurgical cholestasis (N = 20) and extrahepatic portal hypertension (N = 20), and a control group (N = 20). A mild alteration of the recognition memory occurred in rats with cholestasis compared to control rats and portal hypertensive rats. The latter group showed the poorest performance on the basis of the behavioral indexes tested. In particular, only the control group spent significantly more time exploring novel objects compared to familiar ones (P < 0.001). In addition, the portal hypertension group spent the shortest time exploring both the novel and familiar objects (P < 0.001). These results suggest that the existence of portosystemic collateral circulation per se may be responsible for subclinical encephalopathy.
Resumo:
There is a great concern in the literature for the development of neuroprotectant drugs to treat Parkinson's disease. Since anesthetic drugs have hyperpolarizing properties, they can possibly act as neuroprotectants. In the present study, we have investigated the neuroprotective effect of a mixture of ketamine (85 mg/kg) and xylazine (3 mg/kg) (K/X) on the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or 6-hydroxydopamine (6-OHDA) rat models of Parkinson's disease. The bilateral infusion of MPTP (100 µg/side) or 6-OHDA (10 µg/side) into the substantia nigra pars compacta of adult male Wistar rats under thiopental anesthesia caused a modest (~67%) or severe (~91%) loss of tyrosine hydroxylase-immunostained cells, respectively. On the other hand, an apparent neuroprotective effect was observed when the rats were anesthetized with K/X, infused 5 min before surgery. This treatment caused loss of only 33% of the nigral tyrosine hydroxylase-immunostained cells due to the MPTP infusion and 51% due to the 6-OHDA infusion. This neuroprotective effect of K/X was also suggested by a less severe reduction of striatal dopamine levels in animals treated with these neurotoxins. In the working memory version of the Morris water maze task, both MPTP- and 6-OHDA-lesioned animals spent nearly 10 s longer to find the hidden platform in the groups where the neurotoxins were infused under thiopental anesthesia, compared to control animals. This amnestic effect was not observed in rats infused with the neurotoxins under K/X anesthesia. These results suggest that drugs with a pharmacological profile similar to that of K/X may be useful to delay the progression of Parkinson's disease.
Resumo:
ABSTRACT The present study aims to present the main concepts of the sugarcane straw to energy planning. Throughout the study, the subject is contextualized highlighting broader aspects of sustainability, which is considered the main driver towards agro-energy modernization. Concerning sugarcane straw, we first evaluated its availability regarding technical and economic aspects, and then it summarized the straw production chain for energy supply purposes. As a proposal to support agro-energy planning, it is presented some spatial tools that have been barely used in the Brazilian energy planning context so far. Therefore, working on straw to electricity associated with supply chain basis, we developed a conceptual model to spatially assess this bioenergy system. Using the model proposed, it is described the whole supply chain at state level, which accounted the potential of a single mill to explore straw, as well as main costs associated with straw acquisition, investments on the straw recovery routes and electricity transmission. Bearing these concepts in mind, it is fully believed that spatial analysis can bring important information for agro-energy action plans.
Resumo:
We studied some of the characteristics of the improving effect of the non-specific adenosine receptor antagonist, caffeine, using an animal model of learning and memory. Groups of 12 adult male Wistar rats receiving caffeine (0.3-30 mg/kg, ip, in 0.1 ml/100 g body weight) administered 30 min before training, immediately after training, or 30 min before the test session were tested in the spatial version of the Morris water maze task. Post-training administration of caffeine improved memory retention at the doses of 0.3-10 mg/kg (the rats swam up to 600 cm less to find the platform in the test session, P<=0.05) but not at the dose of 30 mg/kg. Pre-test caffeine administration also caused a small increase in memory retrieval (the escape path of the rats was up to 500 cm shorter, P<=0.05). In contrast, pre-training caffeine administration did not alter the performance of the animals either in the training or in the test session. These data provide evidence that caffeine improves memory retention but not memory acquisition, explaining some discrepancies among reports in the literature.
Resumo:
Permanent bilateral occlusion of the common carotid arteries (2VO) in the rat has been established as a valid experimental model to investigate the effects of chronic cerebral hypoperfusion on cognitive function and neurodegenerative processes. Our aim was to compare the cognitive and morphological outcomes following the standard 2VO procedure, in which there is concomitant artery ligation, with those of a modified protocol, with a 1-week interval between artery occlusions to avoid an abrupt reduction of cerebral blood flow, as assessed by animal performance in the water maze and damage extension to the hippocampus and striatum. Male Wistar rats (N = 47) aged 3 months were subjected to chronic hypoperfusion by permanent bilateral ligation of the common carotid arteries using either the standard or the modified protocol, with the right carotid being the first to be occluded. Three months after the surgical procedure, rat performance in the water maze was assessed to investigate long-term effects on spatial learning and memory and their brains were processed in order to estimate hippocampal volume and striatal area. Both groups of hypoperfused rats showed deficits in reference (F(8,172) = 7.0951, P < 0.00001) and working spatial memory [2nd (F(2,44) = 7.6884, P < 0.001), 3rd (F(2,44) = 21.481, P < 0.00001) and 4th trials (F(2,44) = 28.620, P < 0.0001)]; however, no evidence of tissue atrophy was found in the brain structures studied. Despite similar behavioral and morphological outcomes, the rats submitted to the modified protocol showed a significant increase in survival rate, during the 3 months of the experiment (P < 0.02).