27 resultados para Spatial Mixture Models
em Scielo Saúde Pública - SP
Resumo:
The structural modeling of spatial dependence, using a geostatistical approach, is an indispensable tool to determine parameters that define this structure, applied on interpolation of values at unsampled points by kriging techniques. However, the estimation of parameters can be greatly affected by the presence of atypical observations in sampled data. The purpose of this study was to use diagnostic techniques in Gaussian spatial linear models in geostatistics to evaluate the sensitivity of maximum likelihood and restrict maximum likelihood estimators to small perturbations in these data. For this purpose, studies with simulated and experimental data were conducted. Results with simulated data showed that the diagnostic techniques were efficient to identify the perturbation in data. The results with real data indicated that atypical values among the sampled data may have a strong influence on thematic maps, thus changing the spatial dependence structure. The application of diagnostic techniques should be part of any geostatistical analysis, to ensure a better quality of the information from thematic maps.
Resumo:
Mixture Models can be used in experimental situations involving areas related to food science and chemistry. Some problems of a statistical nature can be found, such as effects of multicollinearity that result in uncertainty in the optimization of a dependent variable. This study proposes the application of the ridge model adapted for mixture planning considering the Kronecker (K-model) and Scheffe (S-Model) methods applied to response surfaces. The method determined the proportions of hexane, acetone and alcohol proportions that resulted in the maximum response of percentage of extracted pequi (Caryocar brasiliense) pulp oil.
Resumo:
The penetration resistance (PR) is a soil attribute that allows identifies areas with restrictions due to compaction, which results in mechanical impedance for root growth and reduced crop yield. The aim of this study was to characterize the PR of an agricultural soil by geostatistical and multivariate analysis. Sampling was done randomly in 90 points up to 0.60 m depth. It was determined spatial distribution models of PR, and defined areas with mechanical impedance for roots growth. The PR showed a random distribution to 0.55 and 0.60 m depth. PR in other depths analyzed showed spatial dependence, with adjustments to exponential and spherical models. The cluster analysis that considered sampling points allowed establishing areas with compaction problem identified in the maps by kriging interpolation. The analysis with main components identified three soil layers, where the middle layer showed the highest values of PR.
Resumo:
Solid mixtures for refreshment are already totally integrated to the Brazilian consumers' daily routine, because of their quick preparation method, yield and reasonable price - quite lower if compared to 'ready-to-drink' products or products for prompt consumption, what makes them economically more accessible to low-income populations. Within such a context, the aim of this work was to evaluate the physicochemical and mineral composition, as well as the hygroscopic behavior of four different brands of solid mixture for mango refreshment. The BET, GAB, Oswim and Henderson mathematical models were built through the adjustment of experimental data to the isotherms of adsorption. Results from the physiochemical evaluation showed that the solid mixtures for refreshments are considerable sources of ascorbic acid and reductor sugar; and regarding mineral compounds, they are significant sources of calcium, sodium and potassium. It was also verified that the solid mixtures for refreshments of the four studied brands are considered highly hygroscopic.
Resumo:
The combined use of precision agriculture and the Diagnosis and Recommendation Integrated System (DRIS) allows the spatial monitoring of coffee nutrient balance to provide more balanced and cost-effective fertilizer recommendations. The objective of this work was to evaluate the spatial variability in the nutritional status of two coffee varieties using the Mean Nutritional Balance Index (NBIm) and its relationship with their respective yields. The experiment was conducted in eastern Minas Gerais in two areas, one planted with variety Catucaí and another with variety Catuaí. The NBIm of the two varieties and their yields were analyzed through geostatistics and, based on the models and parameters of the variograms, were interpolated to obtain their spatial distribution in the studied areas. Variety Catucai, with grater spatial variability, was more nutritional unbalanced than variety Catuai, and consequently produced lower yields. Excess of Fe and Mn makes these elements limiting yield factors.
Resumo:
OBJECTIVE To analyze the spatial distribution of risk for tuberculosis and its socioeconomic determinants in the city of Rio de Janeiro, Brazil.METHODS An ecological study on the association between the mean incidence rate of tuberculosis from 2004 to 2006 and socioeconomic indicators of the Censo Demográfico (Demographic Census) of 2000. The unit of analysis was the home district registered in the Sistema de Informação de Agravos de Notificação (Notifiable Diseases Information System) of Rio de Janeiro, Southeastern Brazil. The rates were standardized by sex and age group, and smoothed by the empirical Bayes method. Spatial autocorrelation was evaluated by Moran’s I. Multiple linear regression models were studied and the appropriateness of incorporating the spatial component in modeling was evaluated.RESULTS We observed a higher risk of the disease in some neighborhoods of the port and north regions, as well as a high incidence in the slums of Rocinha and Vidigal, in the south region, and Cidade de Deus, in the west. The final model identified a positive association for the variables: percentage of permanent private households in which the head of the house earns three to five minimum wages; percentage of individual residents in the neighborhood; and percentage of people living in homes with more than two people per bedroom.CONCLUSIONS The spatial analysis identified areas of risk of tuberculosis incidence in the neighborhoods of the city of Rio de Janeiro and also found spatial dependence for the incidence of tuberculosis and some socioeconomic variables. However, the inclusion of the space component in the final model was not required during the modeling process.
Resumo:
INTRODUCTION: Malaria is a serious problem in the Brazilian Amazon region, and the detection of possible risk factors could be of great interest for public health authorities. The objective of this article was to investigate the association between environmental variables and the yearly registers of malaria in the Amazon region using Bayesian spatiotemporal methods. METHODS: We used Poisson spatiotemporal regression models to analyze the Brazilian Amazon forest malaria count for the period from 1999 to 2008. In this study, we included some covariates that could be important in the yearly prediction of malaria, such as deforestation rate. We obtained the inferences using a Bayesian approach and Markov Chain Monte Carlo (MCMC) methods to simulate samples for the joint posterior distribution of interest. The discrimination of different models was also discussed. RESULTS: The model proposed here suggests that deforestation rate, the number of inhabitants per km², and the human development index (HDI) are important in the prediction of malaria cases. CONCLUSIONS: It is possible to conclude that human development, population growth, deforestation, and their associated ecological alterations are conducive to increasing malaria risk. We conclude that the use of Poisson regression models that capture the spatial and temporal effects under the Bayesian paradigm is a good strategy for modeling malaria counts.
Resumo:
ABSTRACT This study investigated the assemblages attributes (composition, abundance, richness, diversity and evenness) and the most representative genera of Odonata, Anisoptera at Água Boa and Perobão Streams, Iguatemi River basin, Brazil. Both are first order streams with similar length that are impacted by riparian forest removal and silting. Quarterly samplings were conducted from March to December 2008 in the upper, intermediate and lower stretch of each stream. The Mantel test was used to check the influence of spatial autocorrelation on the Odonata composition. Spatial variations in the composition were summarized by the Principal Coordinates Analysis (PCoA) using Mantel test residuals. The effects of spatial correlation on richness and abundance were investigated by the spatial correlogram of Moranʼs I coefficients. The most representative genera in each stream were identified by the Indicator Value Method. The spatial variations in the attributes of the assemblages were assessed using analysis of variance of null models. We collected 500 immature individuals of 23 genera and three families. Among the attributes analyzed only the composition and abundance showed significant spatial differences, with the highest mean abundance found in the Perobão Stream. Miathyria and Zenithoptera were the indicator genera of the Água Boa Stream and Erythrodiplax, Libellula, Macrothemis, Progomphus and Tramea were the indicator genera of the Perobão Stream.
Resumo:
The organophosphate temephos has been the main insecticide used against larvae of the dengue and yellow fever mosquito (Aedes aegypti) in Brazil since the mid-1980s. Reports of resistance date back to 1995; however, no systematic reports of widespread temephos resistance have occurred to date. As resistance investigation is paramount for strategic decision-making by health officials, our objective here was to investigate the spatial and temporal spread of temephos resistance in Ae. aegypti in Brazil for the last 12 years using discriminating temephos concentrations and the bioassay protocols of the World Health Organization. The mortality results obtained were subjected to spatial analysis for distance interpolation using semi-variance models to generate maps that depict the spread of temephos resistance in Brazil since 1999. The problem has been expanding. Since 2002-2003, approximately half the country has exhibited mosquito populations resistant to temephos. The frequency of temephos resistance and, likely, control failures, which start when the insecticide mortality level drops below 80%, has increased even further since 2004. Few parts of Brazil are able to achieve the target 80% efficacy threshold by 2010/2011, resulting in a significant risk of control failure by temephos in most of the country. The widespread resistance to temephos in Brazilian Ae. aegypti populations greatly compromise effective mosquito control efforts using this insecticide and indicates the urgent need to identify alternative insecticides aided by the preventive elimination of potential mosquito breeding sites.
Resumo:
The study of organisms and their resources is critical to further understanding population dynamics in space and time. Although drosophilids have been widely used as biological models, their relationship with breeding and feeding sites has received little attention. Here, we investigate drosophilids breeding in fruits in the Brazilian Savanna, in two contrasting vegetation types, throughout 16 months. Specifically, larval assemblages were compared between savannas and forests, as well as between rainy and dry seasons. The relationships between resource availability and drosophilid abundance and richness were also tested. The community (4,022 drosophilids of 23 species and 2,496 fruits of 57 plant taxa) varied widely in space and time. Drosophilid assemblages experienced a strong bottleneck during the dry season, decreasing to only 0.5% of the abundance of the rainy season. Additionally, savannas displayed lower richness and higher abundance than the forests, and were dominated by exotic species. Both differences in larval assemblages throughout the year and between savannas and gallery forests are consistent with those previously seen in adults. Although the causes of this dynamic are clearly multifactorial, resource availability (richness and abundance of rotten fruits) was a good predictor of the fly assemblage structure.
Resumo:
The estimation of non available soil variables through the knowledge of other related measured variables can be achieved through pedotransfer functions (PTF) mainly saving time and reducing cost. Great differences among soils, however, can yield non desirable results when applying this method. This study discusses the application of developed PTFs by several authors using a variety of soils of different characteristics, to evaluate soil water contents of two Brazilian lowland soils. Comparisons are made between PTF evaluated data and field measured data, using statistical and geostatistical tools, like mean error, root mean square error, semivariogram, cross-validation, and regression coefficient. The eight tested PTFs to evaluate gravimetric soil water contents (Ug) at the tensions of 33 kPa and 1,500 kPa presented a tendency to overestimate Ug 33 kPa and underestimate Ug1,500 kPa. The PTFs were ranked according to their performance and also with respect to their potential in describing the structure of the spatial variability of the set of measured values. Although none of the PTFs have changed the distribution pattern of the data, all resulted in mean and variance statistically different from those observed for all measured values. The PTFs that presented the best predictive values of Ug33 kPa and Ug1,500 kPa were not the same that had the best performance to reproduce the structure of spatial variability of these variables.
Resumo:
Statistical models allow the representation of data sets and the estimation and/or prediction of the behavior of a given variable through its interaction with the other variables involved in a phenomenon. Among other different statistical models, are the autoregressive state-space models (ARSS) and the linear regression models (LR), which allow the quantification of the relationships among soil-plant-atmosphere system variables. To compare the quality of the ARSS and LR models for the modeling of the relationships between soybean yield and soil physical properties, Akaike's Information Criterion, which provides a coefficient for the selection of the best model, was used in this study. The data sets were sampled in a Rhodic Acrudox soil, along a spatial transect with 84 points spaced 3 m apart. At each sampling point, soybean samples were collected for yield quantification. At the same site, soil penetration resistance was also measured and soil samples were collected to measure soil bulk density in the 0-0.10 m and 0.10-0.20 m layers. Results showed autocorrelation and a cross correlation structure of soybean yield and soil penetration resistance data. Soil bulk density data, however, were only autocorrelated in the 0-0.10 m layer and not cross correlated with soybean yield. The results showed the higher efficiency of the autoregressive space-state models in relation to the equivalent simple and multiple linear regression models using Akaike's Information Criterion. The resulting values were comparatively lower than the values obtained by the regression models, for all combinations of explanatory variables.
Resumo:
Soil properties have an enormous impact on economic and environmental aspects of agricultural production. Quantitative relationships between soil properties and the factors that influence their variability are the basis of digital soil mapping. The predictive models of soil properties evaluated in this work are statistical (multiple linear regression-MLR) and geostatistical (ordinary kriging and co-kriging). The study was conducted in the municipality of Bom Jardim, RJ, using a soil database with 208 sampling points. Predictive models were evaluated for sand, silt and clay fractions, pH in water and organic carbon at six depths according to the specifications of the consortium of digital soil mapping at the global level (GlobalSoilMap). Continuous covariates and categorical predictors were used and their contributions to the model assessed. Only the environmental covariates elevation, aspect, stream power index (SPI), soil wetness index (SWI), normalized difference vegetation index (NDVI), and b3/b2 band ratio were significantly correlated with soil properties. The predictive models had a mean coefficient of determination of 0.21. Best results were obtained with the geostatistical predictive models, where the highest coefficient of determination 0.43 was associated with sand properties between 60 to 100 cm deep. The use of a sparse data set of soil properties for digital mapping can explain only part of the spatial variation of these properties. The results may be related to the sampling density and the quantity and quality of the environmental covariates and predictive models used.
Resumo:
The assessment of spatial uncertainty in the prediction of nutrient losses by erosion associated with landscape models is an important tool for soil conservation planning. The purpose of this study was to evaluate the spatial and local uncertainty in predicting depletion rates of soil nutrients (P, K, Ca, and Mg) by soil erosion from green and burnt sugarcane harvesting scenarios, using sequential Gaussian simulation (SGS). A regular grid with equidistant intervals of 50 m (626 points) was established in the 200-ha study area, in Tabapuã, São Paulo, Brazil. The rate of soil depletion (SD) was calculated from the relation between the nutrient concentration in the sediments and the chemical properties in the original soil for all grid points. The data were subjected to descriptive statistical and geostatistical analysis. The mean SD rate for all nutrients was higher in the slash-and-burn than the green cane harvest scenario (Student’s t-test, p<0.05). In both scenarios, nutrient loss followed the order: Ca>Mg>K>P. The SD rate was highest in areas with greater slope. Lower uncertainties were associated to the areas with higher SD and steeper slopes. Spatial uncertainties were highest for areas of transition between concave and convex landforms.
Resumo:
ABSTRACT The study of soil chemical and physical properties variability is important for suitable management practices. The aim of this study was to evaluate the spatial variability of soil properties in the Malhada do Meio settlement to subsidize soil use planning. The settlement is located in Chapadinha, MA, Brazil, and has an area of 630.86 ha. The vegetation is seasonal submontane deciduous forest and steppe savanna. The geology is formed of sandstones and siltstones of theItapecuru Formation and by colluvial and alluvial deposits. The relief consists of hills with rounded and flat tops with an average altitude of 67 m, and frequently covered over by ferruginous duricrusts. A total of 183 georeferenced soil samples were collected at the depth of 0.00-0.20 m inPlintossolos, Neossolo andGleissolo. The following chemical variables were analyzed: pH(CaCl2), H+Al, Al, SB, V, CEC, P, K, OM, Ca, Mg, SiO2, Al2O3, and Fe2O3; along with particle size variables: clay, silt, and sand. Descriptive statistical and geostatistical analyses were carried out. The coefficient of variation (CV) was high for most of the variables, with the exception of pH with a low CV, and of sand with a medium CV. The models fitted to the experimental semivariograms of these variables were the exponential and the spherical. The range values were from 999 m to 3,690 m. For the variables pH(CaCl2), SB, and clay, there are three specific areas for land use planning. The central part of the area (zone III), where thePlintossolos Pétricos and Neossolos Flúvicos occur, is the most suitable for crops due to higher macronutrient content, organic matter and pH. Zones I and II are indicated for environmental preservation.