2 resultados para Sparks

em Scielo Saúde Pública - SP


Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION: Enterobacteriaceae strains are a leading cause of bloodstream infections (BSI). The aim of this study is to assess differences in clinical outcomes of patients with BSI caused by Enterobacteriaceae strains before and after introduction of an automated microbiologic system by the microbiology laboratory. METHODS: We conducted a retrospective cohort study aimed to evaluate the impact of the introduction of an automated microbiologic system (Phoenix(tm) automated microbiology system, Becton, Dickinson and Company (BD) - Diagnostic Systems, Sparks, MD, USA) on the outcomes of BSIs caused by Enterobacteriaceae strains. The study was undertaken at Hospital São Paulo, a 750-bed teaching hospital in São Paulo, Brazil. Patients with BSI caused by Enterobacteriaceae strains before the introduction of the automated system were compared with patients with BSI caused by the same pathogens after the introduction of the automated system with regard to treatment adequacy, clinical cure/improvement and 14- and 28-day mortality rates. RESULTS: We evaluated 90 and 106 patients in the non-automated and automated testing periods, respectively. The most prevalent species in both periods were Klebsiella spp. and Proteus spp. Clinical cure/improvement occurred in 70% and 67.9% in non-automated and automated period, respectively (p=0.75). 14-day mortality rates were 22.2% and 30% (p=0.94) and 28-day mortality rates were 24.5% and 40.5% (p= 0.12). There were no significant differences between the two testing periods with regard to treatment adequacy, clinical cure/improvement and 14- and 28-day mortality rates. CONCLUSIONS: Introduction of the BD Phoenix(tm) automated microbiology system did not impact the clinical outcomes of BSIs caused by Enterobacteriaceae strains in our setting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In cardiomyocytes, calcium (Ca2+) release units comprise clusters of intracellular Ca2+ release channels located on the sarcoplasmic reticulum, and hypertension is well established as a cause of defects in calcium release unit function. Our objective was to determine whether endurance exercise training could attenuate the deleterious effects of hypertension on calcium release unit components and Ca2+ sparks in left ventricular myocytes of spontaneously hypertensive rats. Male Wistar and spontaneously hypertensive rats (4 months of age) were divided into 4 groups: normotensive (NC) and hypertensive control (HC), and normotensive (NT) and hypertensive trained (HT) animals (7 rats per group). NC and HC rats were submitted to a low-intensity treadmill running protocol (5 days/week, 1 h/day, 0% grade, and 50-60% of maximal running speed) for 8 weeks. Gene expression of the ryanodine receptor type 2 (RyR2) and FK506 binding protein (FKBP12.6) increased (270%) and decreased (88%), respectively, in HC compared to NC rats. Endurance exercise training reversed these changes by reducing RyR2 (230%) and normalizing FKBP12.6 gene expression (112%). Hypertension also increased the frequency of Ca2+ sparks (HC=7.61±0.26 vs NC=4.79±0.19 per 100 µm/s) and decreased its amplitude (HC=0.260±0.08 vs NC=0.324±0.10 ΔF/F0), full width at half-maximum amplitude (HC=1.05±0.08 vs NC=1.26±0.01 µm), total duration (HC=11.51±0.12 vs NC=14.97±0.24 ms), time to peak (HC=4.84±0.06 vs NC=6.31±0.14 ms), and time constant of decay (HC=8.68±0.12 vs NC=10.21±0.22 ms). These changes were partially reversed in HT rats (frequency of Ca2+ sparks=6.26±0.19 µm/s, amplitude=0.282±0.10 ΔF/F0, full width at half-maximum amplitude=1.14±0.01 µm, total duration=13.34±0.17 ms, time to peak=5.43±0.08 ms, and time constant of decay=9.43±0.15 ms). Endurance exercise training attenuated the deleterious effects of hypertension on calcium release units of left ventricular myocytes.