47 resultados para Soxhlet Extractor
em Scielo Saúde Pública - SP
Resumo:
This study aimed to evaluate the antioxidant potential and fatty acid profile of gabiroba (Campomanesia xanthocarpa Berg) seeds. In order to obtain the extract, the seeds were dried, crushed, and subjected to sequential extraction by maceration and percolation in a modified soxhlet extractor using solvent polarity gradient composed of hexane, chloroform, ethyl acetate, and alcohol, respectively. The extraction time was six hours. The ethanol extract showed the highest antioxidant potential, given by the EC50 value and the amount of total phenolic compounds. High amounts of unsaturated fatty acids were found in the oil studied, especially the oleic acid.
Resumo:
This work had as objective verified the term-stability of the Soxhlet modified system with analytical and pharmacothecnical application in extractive processes of Nasturtium officinale. It has proven that the process is thermo-stable. The analysis with analytical have determined 3.606 mg g-1 in chlorogenic acid and 11.813 mg g-1 in rutin (extract 1:20 w/v) and with pharmacotecnical 3.427 mg g-1 in chlorogenic acid and 11.278 mg g-1 in rutin (extract 1:6 w/v). The income of the pharmacothecnical process was inferior to the analytical, suggesting that the pharmacothecnical process would need of at least the double of time in each extraction system.
Resumo:
Como o processo atual utilizado para a determinação do teor de óleo na polpa do abacate (extrator de Soxhlet) é oneroso e muito demorado, torna-se importante o conhecimento de um método que possibilite de maneira prática e rápida a avaliação do teor de óleo na polpa. No presente trabalho procurou-se comprovar uma possível correlação entre os teores de água e óleo na polpa do abacate. A determinação da porcentagem de água na polpa é fácil e de baixo custo. Através dela poder-se-ia determinar o teor de óleo. Com esse objetivo conduziu-se um experimento em três regiões ecologicamente diferentes do Estado de São Paulo: Novo Horizonte, Limeira e Itapetininga. Em cada região, utilizou-se três pomares e em cada pomar selecionou-se cinco árvores das cultivares 'Wagner', 'Prince' e 'Collinson' colhendo-se dois frutos de cada árvore, que no conjunto (dez frutos) formaram a amostra a ser analisada, para cada cultivar. Efetuaram-se colheitas em épocas pré-determinadas, visando a análise do teor de óleo e de água na polpa do fruto, desde a sua formação até a época de maturação. Efetuou-se também análises em amostras de frutos deixadas amadurecer até o ponto de consumo (polpa mole). Foi observado que a evolução do teor de óleo na polpa do abacate se processa lentamente no início, acentuando-se no final do desenvolvimento do fruto e o inverso para o teor de água. Foi constatado uma correlação entre o aumento do teor de óleo e a diminuição do teor de água na polpa do abacate. Relacionando-se tal fato, encontrou-se uma equação geral de regressão Y = 86,626 -- 0,727 X, onde Y = porcentagem de água e X = porcentagem de óleo, com ótima adaptação à regressão linear, como comprovou o seu coeficiente de determinação de 91,50%.
Resumo:
The deficiency or excess of micronutrients has been determined by analyses of soil and plant tissue. In Brazil, the lack of studies that would define and standardize extraction and determination methods, as well as lack of correlation and calibration studies, makes it difficult to establish limits of concentration classes for analysis interpretation and fertilizer recommendations for crops. A specific extractor for soil analysis is sometimes chosen due to the ease of use in the laboratory and not in view of its efficiency in determining a bioavailable nutrient. The objectives of this study were to: (a) evaluate B concentrations in the soil as related to the fertilizer rate, soil depth and extractor; (b) verify the nutrient movement in the soil profile; (c) evaluate efficiency of Hot Water, Mehlich-1 and Mehlich-3 as available B extractors, using sunflower as test plant. The experimental design consisted of complete randomized blocks with four replications and treatments of five B rates (0, 2, 4, 6, and 8 kg ha-1) applied to the soil surface and evaluated at six depths (0-0.05, 0.05-0.10, 0.10-0.15, 0.15-0.20, 0.20-0.30, and 0.30-0.40 m). Boron concentrations in the soil extracted by Hot Water, Mehlich-1 and Mehlich-3 extractors increased linearly in relation to B rates at all depths evaluated, indicating B mobility in the profile. The extractors had different B extraction capacities, but were all efficient to evaluate bioavailability of the nutrient to sunflower. Mehlich-1 and Mehlich-3 can therefore be used to analyze B as well as Hot Water.
Resumo:
In a system in which fertilization is recommended, diagnosis of soil K availability and the establishment of critical levels are made difficult by the possibility of a contribution of non-exchangeable forms of K for plant nutrition. Due to its magnitude, this contribution is well diagnosed in long term experiments and in those which compare fertilization systems with positive and negative balances in terms of replacement of the K extracted by plants. The objective of this study was to evaluate K availability in a Hapludalf under fertilization for sixteen years with the addition of K doses. The study was undertaken in an experiment set up in 1991 and carried out until 2007 in the experimental area of the Soil Department of the Federal University of Santa Maria (Universidade Federal de Santa Maria - UFSM), in Santa Maria (RS), Brazil. The soil was a Typic Hapludalf submitted to four doses of K (0, 60, 120 and 180 kg ha-1 K2O) and subdivided in the second year, when 60 kg ha-1 of K2O were reapplied in the subplots in 0, 1, 2 and 3 times. As of the fifth year, the procedure was repeated. Grain yield above ground dry matter and total K content contained in the plant tissue were evaluated. Soil samples were collected, oven dried, ground, passed through a sieve and submitted to exchangeable K analysis by the Mehlich-1 extractor; non-exchangeable K by boiling HNO3 1 mol L-1 and total K by HF digestion. Potassium fertilization guidelines should foresee the establishment of a critical level as of which the recommended dose should accompany crop needs, which coincides with the quantity exported by the grain, without there being the need for the creation of broad ranges of K availability to predict K fertilization. In adopting the K fertilization recommendations proposed in this manner, there will not be K translocation in the soil profile.
Resumo:
Peatlands are ecosystems formed by successive pedogenetic processes, resulting in progressive accumulation of plant remains in the soil column under conditions that inhibit the activity of most microbial decomposers. In Diamantina, state of Minas Gerais, Brazil, a peatland is located at 1366 m asl, in a region with a quartz-rich lithology and characteristic wet grassland vegetation. For this study, the peat area was divided in 12 transects, from which a total of 90 soil samples were collected at a distance of 20 m from each other. The properties rubbed fiber content (RF), bulk density (Bd), mineral material (MM), organic matter (OM), moisture (Moi) and maximum water holding capacity (MWHC) were analyzed in all samples. From three selected profiles of this whole area, samples were collected every 27 cm from the soil surface down to a depth of 216 cm. In these samples, moisture was additionally determined at a pressure of 10 kPa (Moi10) or 1500 kPa (Moi1500), using Richards' extractor and soil organic matter was fractionated by standard procedures. The OM decomposition stage of this peat was found to increase with soil depth. Moi and MWHC were highest in layers with less advanced stages of OM decomposition. The humin levels were highest in layers in earlier stages of OM decomposition and with higher levels of water retention at MWHC and Moi10. Humic acid contents were higher in layers at an intermediate stage of decomposition of organic matter and with lowest levels of water retention at MWHC, Moi10 and Moi1500.
Resumo:
Synthetic root exudates were formulated based on the organic acid composition of root exudates derived from the rhizosphere of aseptically grown corn plants, pH of the rhizosphere, and the background chemical matrices of the soil solutions. The synthetic root exudates, which mimic the chemical conditions of the rhizosphere environment where soil-borne metals are dissolved and absorbed by plants, were used to extract metals from sewage-sludge treated soils 16 successive times. The concentrations of Zn, Cd, Ni, Cr, and Cu of the sludge-treated soil were 71.74, 0.21, 15.90, 58.12, and 37.44 mg kg-1, respectively. The composition of synthetic root exudates consisted of acetic, butyric, glutaric, lactic, maleic, propionic, pyruvic, succinic, tartaric, and valeric acids. The organic acid mixtures had concentrations of 0.05 and 0.1 mol L-1 -COOH. The trace elements removed by successive extractions may be considered representative for the availability of these metals to plants in these soils. The chemical speciation of the metals in the liquid phase was calculated; results showed that metals in sludge-treated soils were dissolved and formed soluble complexes with the different organic acid-based root exudates. The most reactive organic acid ligands were lactate, maleate, tartarate, and acetate. The inorganic ligands of chloride and sulfate played insignificant roles in metal dissolution. Except for Cd, free ions did not represent an important chemical species of the metals in the soil rhizosphere. As different metals formed soluble complexes with different ligands in the rhizosphere, no extractor, based on a single reagent would be able to recover all of the potentially plant-available metals from soils; the root exudate-derived organic acid mixtures tested in this study may be better suited to recover potentially plant-available metals from soils than the conventional extractors.
Resumo:
Despite the large number of studies addressing the quantification of phosphorus (P) availability by different extraction methods, many questions remain unanswered. The aim of this paper was to compare the effectiveness of the extractors Mehlich-1, Anionic Resin (AR) and Mixed Resin (MR), to determine the availability of P under different experimental conditions. The laboratory study was arranged in randomized blocks in a [(3 x 3 x 2) + 3] x 4 factorial design, with four replications, testing the response of three soils with different texture: a very clayey Red Latosol (LV), a sandy clay loam Red Yellow Latosol (LVA), and a sandy loam Yellow Latosol (LA), to three sources (triple superphosphate, reactive phosphate rock from Gafsa-Tunisia; and natural phosphate from Araxá-Minas Gerais) at two P rates (75 and 150 mg dm-3), plus three control treatments (each soil without P application) after four contact periods (15, 30, 60, and 120 days) of the P sources with soil. The soil acidity of LV and LVA was adjusted by raising base saturation to 60 % with the application of CaCO3 and MgCO3 at a 4:1 molar ratio (LA required no correction). These samples were maintained at field moisture capacity for 30 days. After the contact periods, the samples were collected to quantify the available P concentrations by the three extractants. In general, all three indicated that the available P-content in soils was reduced after longer contact periods with the P sources. Of the three sources, this reduction was most pronounced for triple superphosphate, intermediate for reactive phosphate, while Araxá phosphate was least sensitive to the effect of time. It was observed that AR extracted lower P levels from all three soils when the sources were phosphate rocks, while MR extracted values close to Mehlich-1 in LV (clay) and LVA (medium texture) for reactive phosphate. For Araxá phosphate, much higher P values were determined by Mehlich-1 than by the resins, because of the acidity of the extractor. For triple superphosphate, both resins extracted higher P levels than Mehlich-1, due to the consumption of this extractor, particularly when used for LV and LVA.
Resumo:
Efficient analytical methods for the quantification of plant-available Zn contained in mineral fertilizers and industrial by-products are fundamental for the control and marketing of these inputs. In this sense, there are some doubts on the part of the scientific community as well as of the fertilizer production sector, whether the extractor requested by the government (Normative Instruction No. 28, called 2nd extractor), which is citric acid 2 % (2 % CA) (Brasil, 2007b), is effective in predicting the plant availability of Zn via mineral fertilizers and about the agronomic significance of the required minimal solubility of 60 % compared to the total content (HCl) (Brasil, 2007a). The purpose of this study was to evaluate the alternative extractors DTPA, EDTA, neutral ammonium citrate (NAC), buffer solution pH 6.0, 10 % HCl, 10 % sulfuric acid, 1 % acetic acid, water, and hot water to quantify the contents of Zn available for maize and compare them with indices of agronomic efficiency of fertilizers and industrial by-products when applied to dystrophic Clayey Red Latosol and Dystrophic Alic Red Yellow Latosol with medium texture. The rate of Zn applied to the soil was 5 mg kg-1, using the sources zinc sulfate, commercial granular zinc, ash and galvanic sludge, ash and two brass slags. Most Zn was extracted from the sources by DTPA, 10 % HCl, NAC, 1% acetic acid, and 10 % sulfuric acid. Recovery by the extractors 2 % CA, EDTA, water, and hot water was low. The agronomic efficiency index was found to be high when using galvanic sludge (238 %) and commercial granular zinc (142 %) and lower with brass slag I and II (67 and 27 %, respectively). The sources galvanizing ash and brass ash showed solubility lower than 60 % in 2 % CA, despite agronomic efficiency indices of 78 and 125 %, respectively. The low agronomic efficiency index of industrial by-products such as brass slag I and galvanizing ash can be compensated by higher doses, provided there is no restriction, as well as for all other sources, in terms of contaminant levels of arsenic, cadmium, chromium, lead, and mercury as required by law (Normative Instruction No 27/2006). The implementation of 2nd extractor 2 % CA and the requirement of minimum solubility for industrial by-products could restrict the use of alternative sources as potential Zn sources for plants.
Resumo:
Based on the assumption that silicate application can raise soil P availability for crops, the aim of this research was to compare the effect of silicate application on soil P desorption with that of liming, in evaluations based on two extractors and plant growth. The experiment was carried out in randomized blocks with four replications, in a 3 × 3 × 5 factorial design, in which three soil types, three P rates, and four soil acidity correctives were evaluated in 180 experimental plots. Trials were performed in a greenhouse using corn plants in 20-dm³ pots. Three P rates (0, 50 and 150 mg dm-3) were applied in the form of powder triple superphosphate and the soil was incubated for 90 days. After this period, soil samples were collected for routine chemical analysis and P content determination by the extraction methods resin, Mehlich-1 and remaining P. Based on the results, acidity correctives were applied at rates calculated for base saturation increased to 70 %, with subsequent incubation for 60 more days, when P content was determined again. The acidity correctives consisted of: dolomitic lime, steelmaking slag, ladle furnace slag, and wollastonite. Therefore, our results showed that slags raised the soil P content more than lime, suggesting a positive correlation between P and Si in soil. Silicon did not affect the extractor choice since both Mehlich-1 and resin had the same behavior regarding extracted P when silicon was applied to the soil. For all evaluated plant parameters, there was significant interaction between P rates and correctives; highest values were obtained with silicate.
Resumo:
The Mehlich-1 (M-1) extractant and Monocalcium Phosphate in acetic acid (MCPa) have mechanisms for extraction of available P and S in acidity and in ligand exchange, whether of the sulfate of the extractant by the phosphate of the soil, or of the phosphate of the extractant by the sulfate of the soil. In clayey soils, with greater P adsorption capacity, or lower remaining P (Rem-P) value, which corresponds to soils with greater Phosphate Buffer Capacity (PBC), more buffered for acidity, the initially low pH of the extractants increases over their time of contact with the soil in the direction of the pH of the soil; and the sulfate of the M-1 or the phosphate of the MCPa is adsorbed by adsorption sites occupied by these anions or not. This situation makes the extractant lose its extraction capacity, a phenomenon known as loss of extraction capacity or consumption of the extractant, the object of this study. Twenty soil samples were chosen so as to cover the range of Rem-P (0 to 60 mg L-1). Rem-P was used as a measure of the PBC. The P and S contents available from the soil samples through M-1 and MCPa, and the contents of other nutrients and of organic matter were determined. For determination of loss of extraction capacity, after the rest period, the pH and the P and S contents were measured in both the extracts-soils. Although significant, the loss of extraction capacity of the acidity of the M-1 and MCPa extractants with reduction in the Rem-P value did not have a very expressive effect. A “linear plateau” model was observed for the M-1 for discontinuous loss of extraction capacity of the P content in accordance with reduction in the concentration of the Rem-P or increase in the PBC, suggesting that a discontinuous model should also be adopted for interpretation of available P of soils with different Rem-P values. In contrast, a continuous linear response was observed between the P variables in the extract-soil and Rem-P for the MCPa extractor, which shows increasing loss of extraction capacity of this extractor with an increase in the PBC of the soil, indicating the validity of the linear relationship between the available S of the soil and the PBC, estimated by Rem-P, as currently adopted.
Resumo:
The objective of this work was to establish a calibration equation and to estimate the efficiency of near-infrared reflectance (NIR) spectroscopy for evaluating rapeseed oil content in Southern Brazil. Spectral data from 124 half-sib families were correlated with oil contents determined by the chemical method. The accuracy of the equation was verified by coefficient of determination (R²) of 0.92, error of calibration (SEC) of 0.78, and error of performance (SEP) of 1.22. The oil content of ten genotypes, which were not included in the calibration with NIR, was similar to the one obtained by the standard chemical method. NIR spectroscopy is adequate to differentiate oil content of rapeseed genotypes.
Resumo:
O maracujá (Passiflora edulis) é originário da América Tropical, muito cultivado no Brasil, rico em vitamina C, cálcio e fósforo. Cascas e sementes de maracujá, provenientes do processo de corte e extração da fruta para obtenção do suco, são ainda, atualmente, em grande parte descartadas. Como este descarte representa inúmeras toneladas, agregar valor a estes subprodutos é de interesse econômico, científico e tecnológico. Neste trabalho, realizou-se um estudo para caracterizar e verificar um melhor aproveitamento das sementes excedentes do processamento do suco do maracujá na alimentação humana. Procedeu-se, para tanto, à separação das partes da fruta, com posterior quantificação gravimétrica. As sementes obtidas foram secas em estufa, e posteriormente moídas para a obtenção de um farelo. O óleo do farelo obtido foi extraído em soxhlet e caracterizado através da metodologia oficial da AOCS (1995). O farelo desengordurado obtido foi também caracterizado por métodos físico-químicos, através da determinação do teor de umidade, proteínas, lipídeos, fibras, cinzas e carboidratos por metodologia oficial AOAC (1984). O óleo extraído das sementes apresentou elevado teor de ácidos graxos insaturados (87,54%), com predominância do ácido linoléico, com índice de iodo de 136,5g I2/100g. O farelo desengordurado obtido apresentou teor da 10,53% de umidade; 15,62% de proteínas; 0,68% de lipídeos; 1,8% de cinzas, um elevado teor de fibras de 58,98 e 12,39% de carboidratos.
Resumo:
No mundo, existem mais de 580 espécies de maracujazeiros, grande parte nativa da América Tropical e Subtropical, principalmente no Brasil. Os programas de melhoramento utilizam uma parte pequena dos recursos genéticos disponíveis, já que o potencial deste material geralmente não está suficientemente caracterizado. O objetivo deste trabalho foi a caracterização do teor de lipídios e do perfil de ácidos graxos presentes nas sementes de 03 espécies nativas silvestres de maracujás (Passiflora cincinnata, P. setacea e P. nitida), empregando o maracujá comercial (P.edulis) como referência. Os lipídios totais foram extraídos com éter de petróleo em extrator tipo Soxhlet. O perfil dos ésteres metílicos foi caracterizado por cromatografia a gás, usando detector de ionização de chama. A espécie P. setacea apresentou o maior teor de óleo (31,2-33,5%), seguida por P. nitida (29,5-32,3%) e P. cincinnata (16,7-19,2%). O óleo de P. setacea apresentou 64,7% de ácido linoleico, 19,7% de oleico e 10,2% de ácido palmítico; o óleo de P. nitida apresentou os ácidos mirístico (0,6%), palmítico (15,3%), palmitoleico (2,0%), oleico (24,8%), linoleico (51,7%) e um ácido graxo incomum às outras espécies de Passiflora, o láurico (0.4%); já o óleo de P. cincinnata apresentou os ácidos oleico (11,0%), palmítico (10,2%) e linoleico (74,3%). O ácido linoleico foi predominante nas três espécies estudadas. Todas as espécies apresentaram ácido vacênico (0,3-0,6%), descrito pela primeira vez no gênero Passiflora.