380 resultados para Solos - mapeamento digital
em Scielo Saúde Pública - SP
Resumo:
Regressões nominais logísticas estabelecem relações matemáticas entre variáveis independentes contínuas ou discretas e variáveis dependentes discretas. Essas foram avaliadas quanto ao seu potencial em predizer a ocorrência e distribuição de classes de solos na região dos municípios de Ibirubá e Quinze de Novembro (RS). A partir de modelo numérico de terreno digital (MNT) com 90 m de resolução, foram calculadas variáveis de terreno topográficas (elevação, declividade e curvatura) e hidrográficas (distância dos rios, índice de umidade topográfica, comprimento de fluxo de escoamento e índice de poder de escoamento). Foram então estabelecidas regressões logísticas múltiplas entre as classes de solos da região com base em levantamento tradicional na escala 1:80.000 e as variáveis de terreno. As regressões serviram para calcular a probabilidade de ocorrência de cada classe de solo, e o mapa final de solos estimado foi produzido atribuindo-se a cada célula do mapa a denominação da classe de solo com maior probabilidade de ocorrência. Observou-se acurácia geral (AG) de 58 % e acurácia pelo coeficiente Kappa de Cohen de 38 %, comparando-se o mapa original com o mapa estimado dentro da escala original. Uma simplificação de escala foi pouco significativa para o aumento da acurácia do mapa, sendo 61 % de AG e 39 % de Kappa. Concluiu-se que as regressões logísticas múltiplas apresentaram potencial preditivo para serem usadas como ferramentas no mapeamento supervisionado de solos.
Resumo:
No presente estudo, foi realizada uma avaliação de diferentes variáveis ambientais no mapeamento digital de solos em uma região no norte do Estado de Minas Gerais, utilizando redes neurais artificiais (RNA). Os atributos do terreno declividade e índice topográfico combinado (CTI), derivados de um modelo digital de elevação, três bandas do sensor Quickbird e um mapa de litologia foram combinados, e a importância de cada variável para discriminação das unidades de mapeamento foi avaliada. O simulador de redes neurais utilizado foi o "Java Neural Network Simulator", e o algoritmo de aprendizado, o "backpropagation". Para cada conjunto testado, foi selecionada uma RNA para a predição das unidades de mapeamento; os mapas gerados por esses conjuntos foram comparados com um mapa de solos produzido com o método convencional, para determinação da concordância entre as classificações. Essa comparação mostrou que o mapa produzido com o uso de todas as variáveis ambientais (declividade, índice CTI, bandas 1, 2 e 3 do Quickbird e litologia) obteve desempenho superior (67,4 % de concordância) ao dos mapas produzidos pelos demais conjuntos de variáveis. Das variáveis utilizadas, a declividade foi a que contribuiu com maior peso, pois, quando suprimida da análise, os resultados da concordância foram os mais baixos (33,7 %). Os resultados demonstraram que a abordagem utilizada pode contribuir para superar alguns dos problemas do mapeamento de solos no Brasil, especialmente em escalas maiores que 1:25.000, tornando sua execução mais rápida e mais barata, sobretudo se houver disponibilidade de dados de sensores remotos de alta resolução espacial a custos mais baixos e facilidade de obtenção dos atributos do terreno nos sistemas de informação geográfica (SIG).
Resumo:
Técnicas de mapeamento digital podem contribuir para agilizar a realização de levantamentos pedológicos detalhados. Objetivou-se com este trabalho obter um mapa digital de solos (MDS) com uso de redes neurais artificiais (RNA), utilizando correlações entre unidades de mapeamento (UM) e covariáveis ambientais. A área utilizada compreendeu aproximadamente 12.000 ha localizados no município de Barra Bonita, SP. A partir do resultado de uma análise de agrupamento das covariáveis ambientais, foram escolhidas cinco áreas de referência para realizar o mapeamento convencional. As UM identificadas subsidiaram a aplicação da técnica de RNA. Utilizaram-se o simulador de redes neurais JavaNNS e o algoritmo de aprendizado backpropagation. Pontos de referência foram coletados para avaliar o desempenho do mapa digital produzido. A posição na paisagem e o material de origem subjacente foram determinantes para o reconhecimento dos delineamentos das UM. Houve boa concordância entre as UM delineadas pelo MDS e pelo método convencional. A comparação entre os pontos de referência e o mapa de solos digital evidenciou exatidão de 72 %. O uso da abordagem MDS utilizada pode contribuir para diminuir a falta de informações semidetalhadas de solos em locais ainda não mapeados, tomando-se como base informações pedológicas obtidas de áreas de referência adjacentes.
Resumo:
A amostragem é uma das etapas mais importantes dos levantamentos de solos. No entanto, os esquemas de amostragem utilizados nos levantamentos convencionais têm se evidenciado inadequados para o mapeamento digital de solos, pois podem comprometer os resultados e, além disso, não possibilitam a realização de análises estatísticas. Este estudo teve por objetivo avaliar o método de amostragem do hipercubo latino condicionado (cLHS, sigla em inglês), na presença de covariáveis ambientais (elevação, declividade, curvatura e mapa de uso e cobertura do solo), em comparação com a amostragem aleatória, na alocação de 100 pontos amostrais, buscando maior representatividade das características ambientais da bacia do rio Guapi-Macacu. O desempenho dos métodos foi avaliado pela análise qualitativa dos histogramas de frequência e das análises estatísticas pelos testes F, T de Student e Kolmogorov-Smirnov (K-S), para cada covariável. Os resultados apresentaram que os pontos selecionados pelo método cLHS possuíam distribuição geográfica mais adequada do que aqueles obtidos pela amostragem aleatória. Além disso, o método cLHS preservou mais a distribuição de frequência das covariáveis contínuas do que a amostragem aleatória; para covariável categórica uso e cobertura do solo os métodos foram equivalentes. Os testes estatísticos confirmaram o melhor desempenho do método cLHS, cujas amostras não diferiram estatisticamente da bacia. Entretanto, a amostragem aleatória apresentou diferença estatística para com a bacia, para todas as covariáveis contínuas para pelo menos um dos testes utilizados. Assim, o método cLHS pode ser considerado como um método satisfatório para seleção de locais de amostragem em áreas heterogêneas similares as deste estudo, visando a utilização no mapeamento digital de solos.
Resumo:
Os modelos digitais de elevação (MDEs) são fontes fundamentais para correlacionar a ocorrência e distribuição de solos com a paisagem pelo mapeamento digital de solos (MDS). A influência dos tipos e das resoluções dos MDEs na capacidade de predição dos modelos preditores de classes de solo ainda é pouco estudada. Neste estudo, foram avaliados e comparados os efeitos de diferentes MDEs na predição de ocorrência de unidades de mapeamento de solo (UM). Foram correlacionados 12 atributos do terreno derivados de diferentes MDEs com a ocorrência de UM. Os MDEs utilizados foram os oriundos dos projetos SRTM v4.1, ASTER GDEM v2, TOPODATA e Brasil em Relevo, e os MDEs gerados a partir de curvas de nível na escala de 1:50.000, com resoluções de 30 e 90 m. Os modelos preditores foram treinados por árvore de decisão (Simple Cart) com dados amostrados em 4.280 pontos aleatórios contendo informações dos solos extraídos de um mapa convencional de solos na escala 1:20.000 e 12 atributos do terreno derivados de seis MDEs com tamanhos de pixel de 30 e 90 m. A validação dos modelos preditores de UM foi realizada com a totalidade dos dados da área. Os atributos do terreno que melhor explicaram a ocorrência das UM foram elevação, declividade, comprimento de fluxo e orientação das vertentes. Os MDEs com tamanho de pixel de 30 m geraram correlações solo-paisagem menos acuradas. Os modelos preditores mais acurados e com maior número de UM estimadas foram os gerados a partir dos MDEs com resolução espacial de 90 m (SRTM v4.1 e CN90), sendo esses os MDEs mais indicados para o MDS, quando predominarem relevos plano e suave ondulado.
Resumo:
Os modelos preditores usados no mapeamento digital de solos (MDS) precisam ser treinados com dados que captem ao máximo a variação dos atributos do terreno e dos solos, a fim de gerar correlações adequadas entre as variáveis ambientais e a ocorrência dos solos. Para avaliar a acurácia desses modelos, tem sido constatado o uso de diferentes métodos de avaliação da acurácia no MDS. Os objetivos deste estudo foram comparar o uso de três esquemas de amostragem para treinar algoritmo de árvore de classificação (CART) e avaliar a capacidade de predição dos modelos gerados por meio de quatro métodos. Foram utilizados os esquemas de amostragem: aleatório simples; proporcional à área de cada unidade de mapeamento de solos (UM); e estratificado pelo número de UM. Os métodos de avaliação testados foram: aparente, divisão percentual, validação cruzada com 10 subconjuntos e reamostragem com sete conjuntos de dados independentes. As acurácias dos modelos estimadas pelos métodos foram comparadas com as acurácias mensuradas obtidas pela comparação dos mapas gerados, a partir de cada esquema de amostragem, com o mapa convencional de solos na escala 1:50.000. Os esquemas de amostragem influenciaram na quantidade de UMs preditas e na acurácia dos modelos e dos mapas gerados. Os esquemas de amostragem proporcional e estratificada resultaram mapas digitais menos acurados, e a acurácia dos modelos variou conforme o método de avaliação empregado. A amostragem aleatória resultou no mapa digital mais acurado e apresentou valores da acurácia semelhantes para todos os métodos de avaliação testados.
Resumo:
Para estudar técnicas de amostragem, úteis ao mapeamento digital de solos (MDS), objetivou-se avaliar o efeito da variação da densidade de pontos amostrais com base em dados de áreas já mapeadas por métodos tradicionais na acurácia dos modelos de árvores de decisão (AD) para a geração de mapas de solos por MDS. Em duas bacias hidrográficas no noroeste do Rio Grande do Sul, usou-se, como referência, antigos mapas convencionais de solos na escala 1:50.000. A partir do modelo digital de elevação do terreno e da rede hidrográfica, foram gerados mapas das variáveis preditoras: elevação, declividade, curvatura, comprimento de fluxo, acúmulo de fluxo, índice de umidade topográfica e distância euclideana de rios. A escolha dos locais dos pontos amostrais foi aleatória e testaram-se densidades amostrais que variaram de 0,1 a 4 pontos/ha. O treinamento dos modelos foi realizado no software Weka, gerando-se modelos preditores usando diferentes tamanhos do nó final da AD para obter AD com tamanhos distintos. Quando não se controlou o tamanho das AD, o aumento da densidade de amostragem resultou no aumento da concordância com os mapas básicos de referências e no aumento do número de unidades de mapeamento preditas. Nas AD com tamanho controlado, o aumento da densidade de amostragem não influenciou a concordância com os mapas de referência e interferiu muito pouco no número de unidades de mapeamento preditas.
Resumo:
O objetivo deste trabalho foi avaliar variáveis discriminantes no mapeamento digital de solos com uso de redes neurais artificiais. Os atributos topográficos elevação, declividade, aspecto, plano de curvatura e índice topográfico, derivados de um modelo digital de elevação, e os índices de minerais de argila, óxido de ferro e vegetação por diferença normalizada, derivados de uma imagem do Landsat7, foram combinados e avaliados quanto à capacidade de discriminação dos solos de uma área no noroeste do Estado do Rio de Janeiro. Foram utilizados o simulador de redes neurais Java e o algoritmo de aprendizado "backpropagation". Os mapas gerados por cada um dos seis conjuntos de variáveis testados foram comparados com pontos de referência, para a determinação da exatidão das classificações. Esta comparação mostrou que o mapa produzido com a utilização de todas as variáveis obteve um desempenho superior (73,81% de concordância) ao de mapas produzidos pelos demais conjuntos de variáveis. Possíveis fontes de erro na utilização dessa abordagem estão relacionadas, principalmente, à grande heterogeneidade litológica da área, que dificultou o estabelecimento de um modelo de correlação ambiental mais realista. A abordagem utilizada pode contribuir para tornar o levantamento de solos no Brasil mais rápido e menos subjetivo.
Resumo:
O objetivo deste trabalho foi avaliar modelos digitais de elevação (MDE), obtidos por diferentes fontes de dados, e selecionar um deles para derivar variáveis morfométricas utilizadas em mapeamento digital de solos. O trabalho foi realizado na Bacia Guapi‑Macacu, RJ. Os dados primários utilizados nos modelos gerados por interpolação (MDE‑carta e MDE‑híbrido) foram: curvas de nível, drenagem, pontos cotados e dados de sensor remoto transformados em pontos. Utilizaram-se, na comparação, modelos obtidos por sensor remoto e por aerorrestituição (MDE SRTM e MDE IBGE). Todos os modelos apresentaram resolução espacial de 30 m. A avaliação dos modelos de elevação foi baseada na análise de: atributos derivados (declividade, aspecto e curvatura); depressões espúrias; comparação entre feições derivadas a partir dos modelos e as originais, oriundas de cartas planialtimétricas; e análise das bacias de contribuição derivadas. O modelo digital de elevação híbrido apresenta qualidade superior à dos demais modelos.
Resumo:
O objetivo deste trabalho foi testar metodologias de mapeamento digital de solos (MDS) e avaliar a possibilidade de extrapolação de mapas entre áreas fisiograficamente semelhantes. A área de referência para o treinamento do modelo localizou-se no Município de Sentinela do Sul, RS, e a extrapolação foi feita para o Município Cerro Grande do Sul, RS. Desenvolveram-se pelo MDS modelos com o uso de variáveis ambientais, como preditoras, e as classes de solos - obtidas de um levantamento convencional na escala 1:50.000 - como variáveis dependentes. Testou-se o uso combinado de dois modelos de árvore de decisão (AD), treinados em duas paisagens com diferentes classes de drenagem. Para Sentinela do Sul, a concordância dos mapas preditos com os produzidos pelo levantamento convencional foi avaliada por matrizes de erro. Como a importância dos erros de mapeamento é variável, criou-se uma matriz ponderada, para atribuir diferentes importâncias aos erros específicos de mapeamento entre as distintas unidades de mapeamento. A acurácia do mapa de Cerro Grande do Sul foi avaliada pela verdade de campo. A extrapolação dos mapas gera resultados satisfatórios, com acurácia maior do que 75%. O uso de modelos com duas AD separadas por paisagens homogêneas gera mapas extrapolados com maior acurácia, avaliada pela verdade de campo.
Resumo:
A espectroscopia de reflectância difusa (ERD) pode ser utilizada como alternativa para quantificação de atributos como granulometria e matéria orgânica do solo (MOS). Essa técnica pode ser opção para quantificar esses atributos em grande volume de amostras de solos, visto ser rápida, com menor custo e sem a geração de resíduos químicos. O objetivo deste estudo foi desenvolver modelos usando análise de regressão linear múltipla para predizer o teor de argila, areia, silte e MOS, utilizando dados de ERD em uma área de relevo e geologia complexa localizada na região central do Rio Grande do Sul. No estudo, foram utilizadas 303 amostras coletadas na profundidade de 0,00-0,20 m para determinar os teores de argila, areia, silte e MOS por meio da análise laboratorial e de reflectância espectral. O desempenho dos modelos de predição apresentaram bons resultados, com capacidade de explicação da variância de 77 e 72 % para areia e argila, respectivamente. Mesmo com a complexidade geológica e pedológica, os resultados evidenciaram que a técnica é promissora, sendo possível a aplicação dessa técnica para predição da granulometria e teor de MOS.
Estatística multivariada aplicada à diminuição do número de preditores no mapeamento digital do solo
Resumo:
O objetivo deste trabalho foi avaliar a possibildade de se gerar um menor conjunto de preditores não correlacionados e potencialmente aplicáveis ao mapeamento digital de solos, pelo uso da estatística multivariada. Os atributos de terreno, elevação, declividade, distância à drenagem, curvatura planar, curvatura de perfil, radiação relativa disponível, logaritmo natural da área de contribuição, índice de umidade topográfica e capacidade de transporte de sedimento, foram transformados pelo método Varimax nas variáveis: altimetria, hidrologia e curvatura. Essa transformação representou uma concentração de 65,57% da variabilidade dos dados originais nas três novas componentes. As novas variáveis possibilitam o emprego de menor quantidade de dados nos modelos preditivos, além do fato de serem não correlacionados. A rotação Varimax permite que a relação com o ambiente de formação do solo seja explicitamente inserida nos modelos preditivos.
Resumo:
O mapeamento digital de solos permite prever padrões de ocorrência de solos com base em áreas de referência e no uso de técnicas de mineração de dados para modelar associações solo-paisagem. Os objetivos deste trabalho foram produzir um mapa pedológico digital por meio de técnicas de mineração de dados aplicadas a variáveis geomorfométricas e de geologia, com base em áreas de referência; e testar a confiabilidade desse mapa por meio de validação em campo com diferentes sistemas de amostragem. O mapeamento foi realizado na folha Botucatu (SF-22-Z-B-VI-3), utilizando-se as folhas 1:50.000, Dois Córregos e São Pedro, como áreas de referência. Variáveis descritoras do relevo e de geologia associadas às unidades de mapeamento pedológico das áreas de referência compuseram a matriz de dados de treinamento. A matriz foi analisada pelo algoritmo PART de árvore de decisão, do aplicativo Weka (Waikato Environment for Knowledge Analysis), que cria regras de classificação. Essas regras foram aplicadas aos dados geomorfométricos e geológicos da folha Botucatu, para predição de unidades de mapeamento pedológico. A validação de campo dos mapas digitais deu-se por meio de amostragem por transectos em uma unidade de mapeamento da folha São Pedro e de forma aleatório-estratificada na folha Botucatu. A avaliação da unidade de mapeamento na folha São Pedro verificou confiabilidade, respectivamente, de 83 e 66 %, para os mapas pedológicos digital e tradicional com legenda simplificada. Apesar de terem sido geradas regras para todas as unidades de mapeamento pedológico das áreas de treinamento, nem todas as unidades de mapeamento foram preditas na folha Botucatu, o que resultou das diferenças de relevo e geologia entre as áreas de treinamento e de mapeamento. A validação de campo do mapa digital da folha Botucatu verificou exatidão global de 52 %, compatível com levantamentos em nível de reconhecimento de baixa intensidade, e kappa de 0,41, indicando qualidade Boa. Unidades de mapeamento mais extensas geraram mais regras, resultando melhor reprodução dos padrões solo-relevo na área a ser mapeada. A validação por transectos na folha São Pedro indicou compatibilidade do mapa digital com o nível de reconhecimento de alta intensidade e compatibilidade do mapa tradicional, após simplificação de sua legenda, com o nível de reconhecimento de baixa intensidade. O treinamento do algoritmo em mapas e não em observações pontuais reduziu em 14 % a exatidão do mapa pedológico digital da folha Botucatu. A amostragem aleatório-estratificada pelo hipercubo latino é apropriada a mapeamentos com extensa base de dados, o que permite avaliar o mapa como um todo, tornando os trabalhos de campo mais eficientes. A amostragem em transectos é compatível com a avaliação da pureza de unidades de mapeamento individualmente, não necessitando de base de dados detalhada e permitindo estudos de associações solo-paisagem em pedossequências.
Resumo:
A produção de mapas pedológicos por meio de técnicas do mapeamento digital de solos (MDS) pode ser dificultada pela falta de mapas pedológicos tradicionais de referência. Nessas situações, o conhecimento tácito do mapeador pode ser usado para o delineamento manual das unidades de mapeamento (UMs) a partir de geração de um mapa de ocorrência de tipos de solos preditos pelo MDS. Os objetivos deste estudo foram avaliar e comparar mapas de solos gerados por dois métodos, um denominado “MDS direto”, em que foi gerado um mapa preditor de UMs com base no modelo estabelecido com informações provenientes de um mapa pedológico convencional de referência preexistente, e outro em que o modelo preditor foi estabelecido a partir do exame de atributos morfológicos de 193 perfis de solo para identificar os tipos de solos, gerando-se um mapa com a indicação de ocorrência de tipos de solos sobre o qual foi realizado o delineamento manual das UMs, com base em mudanças das feições da superfície do solo. As predições foram feitas usando árvores de classificação Simple Cart,correlacionando oito variáveis do terreno com a ocorrência de UMs identificadas com nomes de classes de solos do Sistema Brasileiro de Classificação de Solos. A acurácia dos mapas foi avaliada pela “verdade de campo” (verificação em campo do tipo de solo ocorrente e comparação com o previsto no mapa) e pela concordância dos mapas gerados com o mapa de referência. Quando avaliado pela “verdade de campo”, a acurácia do mapa gerado pelo método MDS direto foi de 74 %, enquanto a acurácia do mapa de MDS com delineamento manual foi de 79 %. Os dois métodos apresentaram resultados satisfatórios; o método que usou o delineamento manual e a identificação em alguns locais dos tipos de solo no campo apresentou a vantagem de não necessitar de mapas pedológicos de referência para o treinamento dos modelos preditores.
Resumo:
RESUMO O conhecimento dos solos é cada vez mais importante para que o uso dele seja realizado corretamente na agropecuária, no crescimento urbano, na conservação dos recursos naturais, entre outros. Entretanto, verifica-se carência de profissionais qualificados para a caracterização e os mapeamentos pedológicos, particularmente em escalas de maior detalhamento. Essa carência, aliada aos avanços das ferramentas computacionais e do sensoriamento remoto, promoveu o surgimento do Mapeamento Digital de Solos (MDS), que busca auxiliar e agilizar as atividades de levantamento pedológico. Assim, este trabalho objetivou desenvolver uma metodologia de delimitaçao de unidades de solos em topossequências por meio do comportamento espectral dos solos no comprimento de onda do Visível-Infravermelho Próximo (Vis-NIR). A metodologia espectral consistiu na obtenção das curvas espectrais dos solos por meio do espectrorradiômetro FieldSpecPro e da redução do número de informações espectrais por meio da análise de Componentes Principais, seguida de agrupamento das amostras mediante método fuzzy k-médias. Foram selecionadas cinco topossequências com pontos equidistantes de 30 m para caracterizar as classes de solos e amostragens. Foram descritas oito classes de solos distintas, que tiveram caracterização detalhada e classificação em perfis pedológicos. No restante dos pontos, a caracterização das classes de solos foi feita com base na classificação dos solos realizada nos perfis pedológicos, com coleta de amostras por meio de tradagens nas profundidades de 0,00-0,20 e 0,80-1,00 m, perfazendo o total de 162 amostras ao longo das cinco topossequências. As amostras foram analisadas pelas metodologias convencional e espectral, para que os resultados pudessem ser comparados e avaliados. Dessa forma, foram realizadas análises morfológicas, físicas (textura) e químicas nas amostras de solo. Das cinco topossequências estudadas, os resultados foram satisfatoriamente semelhantes; alguns solos não foram perfeitamente individualizados pela metodologia espectral, em razão da grande semelhança em seus comportamentos espectrais, como demonstrado pelo Latossolo Vermelho Férrico e Nitossolo Vermelho Férrico. A metodologia espectral foi capaz de diferenciar solos com resposta espectral distinta e estabelecer limites nas topossequências, apresentando grande potencial para ser implementada em levantamentos pedológicos.