39 resultados para Soils -- Analysis -- Togo
em Scielo Saúde Pública - SP
Resumo:
Bioassays under laboratory conditions aiming to determine the larvicidal activity of Bacillus sphaericus were carried out on Anopheles darlingi and Culex quinquefasciatus. In order to estimate the toxicity through median lethal concentration (LC50) and the relative potency of the strains to B. sphaericus standard strain 2362, probit analysis was performed utilizing the POLO-PC program. The findings of LC50 pointed out high effectiveness on strains IB15 (0.040 ppm), IB19 and S1116 (0.048 ppm), IB16 (0.052 ppm) and S265 (0.057 ppm). Strain IB15 presented nearly 50% more potency than strain 2362 in bioassays conducted on A. darlingi. It was observed that IB16 and S1116 strains were the most powerful against C. quinquefasciatus, showing to be about 300-400% stronger than 2362 strain. The results show that laboratory conditioned evaluation can be an important way to select promising bacteria with entomopathogenic action on biolarvicides production for use on mosquitoes breeding sites.
Resumo:
Despite the considerable environmental importance of mercury (Hg), given its high toxicity and ability to contaminate large areas via atmospheric deposition, little is known about its activity in soils, especially tropical soils, in comparison with other heavy metals. This lack of information about Hg arises because analytical methods for determination of Hg are more laborious and expensive compared to methods for other heavy metals. The situation is even more precarious regarding speciation of Hg in soils since sequential extraction methods are also inefficient for this metal. The aim of this paper is to present a technique of thermal desorption associated with atomic absorption spectrometry, TDAAS, as an efficient tool for quantitative determination of Hg in soils. The method consists of the release of Hg by heating, followed by its quantification by atomic absorption spectrometry. It was developed by constructing calibration curves in different soil samples based on increasing volumes of standard Hg2+ solutions. Performance, accuracy, precision, and quantification and detection limit parameters were evaluated. No matrix interference was detected. Certified reference samples and comparison with a Direct Mercury Analyzer, DMA (another highly recognized technique), were used in validation of the method, which proved to be accurate and precise.
Resumo:
A laboratory experiment was carried out to study the effects of chemical and physical characteristics of the soil on the phosphate fixing capacity. One hundred samples collected from various localities were at first characterized chemically and their particlesize distribution determined. They were then tested as to their phosphate fixing capacities. The results obtained were statistically analysed by means of both simple linear and multiple correlation. The following conclusions could be drawn: 1. simple linear regression analysis indicated that % C, exchangeable Al+3, CEC, % clay, pH and % sand were the soil characteristics which significantly affected phosphate fixing capacity of São Paulo State soils; 2. multiple linear regression analysis indicated that % C, exchangeable Mg(+2)9 exchangeable- Al+3 and % clay were the soil characteristics which significantly affected the phosphate fixing capacity of São Paulo State soils; 3. the phosphate phonomena fixing as they occur in the soils of the São Paulo State can be best described by the following equation: Y = -2,266 - 3,484 + 3,514 + 5,559 + 1,005 %C Mg+2 Al+3 % clay exchangeable exchangeable 4. phosphate fixation in the soil is affected by the combined effects of both soil chemical and physical characteristics.
Resumo:
The reaction of nitrogen compounds with ninhydrin can be used as an indicator of cytoplasmic materials released from microbial cells killed by fumigation. Total-N, ninhydrin-reactive-N (NR-N), ammonium-N (A-N), and α-amino-N in the microbial biomass of soils from the State of Rio Grande do Sul, Brazil, were determined, in 1996, in 0.5 mol L-1 K2SO4 extracts of fumigated and non-fumigated soils. Total-N varied from 20.3 to 104.4 mg kg-1 and the ninhydrin-reactive-N corresponded, in average, to 27% of this. The ninhydrin-reactive-N was made up of 67% ammonium-N and 33% aminoacids with the amino group at the α-carbon position. It was concluded that colorimetric analysis of NR-N and A-N may be used as a direct measure of microbial N in soil. This simple and rapid procedure is adequate for routine analyses.
Resumo:
This study was conducted to examine the distribution and nature of Fe oxides in plinthic soils on the sediments of Barreiras Group (in the state of Piauí) and Itapecuru Formation (in the state of Maranhão) in Northeastern Brazil. Four pedons were selected: a "plinthic, dystrophic, epieutrophic Gray Podzolic with low activity clay" and a "dystrophic Plinthosol with low activity clay" (both Plinthic Kandiustalfs) on the Barreiras sediments, as well as an "eutrophic Plinthosol with low activity clay" and an "allic Plinthosol with low activity clay" (both Plinthustalfs) on the Itapecuru sediments. Soil samples were fractionated into > 2 mm (pisoliths), water-stable aggregates (plinthite) and matrices; the aggregates and matrices were further fractionated into sand, silt and clay sizes. Dithionite extractable iron (Fe d) and aluminum (Al d), as well as oxalate extractable iron (Fe o), were determined for all fractions, and X-ray diffraction analyses were performed on the pisoliths. It was observed that the Plinthustalfs contain more iron oxides, exhibit more extensive plinthite development and have a greater potential for further plinthite development than the Kandiustalfs. The distribution of values for the Fe d indicates that plinthite formation and induration in all soils were accompanied by an enrichment of Fe oxides in all particle size fractions. This Fe segregation was accompanied by aggregation of particles leading to a greater degree of crystallinity, as indicated by analysis of the ratios of Al d:Fe d. Larger ratios of goethite to hematite, and relatively smaller amounts of silicates in the more mature pisoliths were revealed by X-ray diffraction analysis. Ratios of Al d:Fe d were larger in the Kandiustalfs than in the Plinthustalfs, and also larger than expected for Al-substituted Fe oxides. According to ratios of Al d:Fe d, Fe mobilization in all soils has likely occurred under reducing conditions, facilitated by organic matter on the soil surface.
Resumo:
The spatial variability of strongly weathered soils under sugarcane and soybean/wheat rotation was quantitatively assessed on 33 fields in two regions in São Paulo State, Brazil: Araras (15 fields with sugarcane) and Assis (11 fields with sugarcane and seven fields with soybean/wheat rotation). Statistical methods used were: nested analysis of variance (for 11 fields), semivariance analysis and analysis of variance within and between fields. Spatial levels from 50 m to several km were analyzed. Results are discussed with reference to a previously published study carried out in the surroundings of Passo Fundo (RS). Similar variability patterns were found for clay content, organic C content and cation exchange capacity. The fields studied are quite homogeneous with respect to these relatively stable soil characteristics. Spatial variability of other characteristics (resin extractable P, pH, base- and Al-saturation and also soil colour), varies with region and, or land use management. Soil management for sugarcane seems to have induced modifications to greater depths than for soybean/wheat rotation. Surface layers of soils under soybean/wheat present relatively little variation, apparently as a result of very intensive soil management. The major part of within-field variation occurs at short distances (< 50 m) in all study areas. Hence, little extra information would be gained by increasing sampling density from, say, 1/km² to 1/50 m². For many purposes, the soils in the study regions can be mapped with the same observation density, but residual variance will not be the same in all areas. Bulk sampling may help to reveal spatial patterns between 50 and 1.000 m.
Resumo:
Liming acid soils is considered to assure the availability of Mo in crops. Additionally, in peanuts (Arachis hypogaea L.) the positive response to liming is associated to a better supply of Ca+2, Mo for the nitrogenase-complex activity, and other non-nitrogen fixing activities of the crop. This study was thus undertaken to assess the effect of lime, Mo, and the lime-Mo interaction on peanut crop, on an acid Ultisol at the Mococa Experimental Station, Instituto Agronômico, São Paulo State, Brazil, from 1987 to 1990. A randomized complete block design with four replications, in a 4 x 4 factorial arrangement, was used in the study. The factors included four lime rates (0, 2, 4, and 6 t ha-1) broadcast and incorporated into the soil, and Mo (0, 100, 200, and 300 g ha-1) as (NH4)2MoO4 applied as seed dressing. Lime was applied once at the beginning of the study while Mo was applied at every planting. Peanut seed cv 'tatu' was used. Significant increase in peanut kernel yield with liming was only evident in the absence of Mo, whereas the peanut response to Mo was observed in two out of the three harvests. A higher yield response (28 % increase) was found when Mo was applied without liming. Soil molybdenum availability, as indicated by plant leaf analysis, increased significantly when lime was applied. Molybdenum fertilization led to higher leaf N content, which in turn increased peanut yield in treatments with smaller lime doses.
Resumo:
The impact of charcoal production on soil hydraulic properties, runoff response and erosion susceptibility were studied in both field and simulation experiments. Core and composite samples, from 12 randomly selected sites within the catchment of Kotokosu were taken from the 0-10 cm layer of a charcoal site soil (CSS) and adjacent field soils (AFS). These samples were used to determine saturated hydraulic conductivity (Ksat), bulk density, total porosity, soil texture and color. Infiltration, surface albedo and soil surface temperature were also measured in both CSS and AFS. Measured properties were used as entries in a rainfall runoff simulation experiment on a smooth (5 % slope) plot of 25 x 25 m grids with 10 cm resolutions. Typical rainfall intensities of the study watershed (high, moderate and low) were applied to five different combinations of Ks distributions that could be expected in this landscape. The results showed significantly (p < 0.01) higher flow characteristics of the soil under charcoal kilns (increase of 88 %). Infiltration was enhanced and runoff volume reduced significantly. The results showed runoff reduction of about 37 and 18 %, and runoff coefficient ranging from 0.47-0.75 and 0.04-0.39 or simulation based on high (200 mm h-1) and moderate (100 mm h-1) rainfall events over the CSS and AFS areas, respectively. Other potential impacts of charcoal production on watershed hydrology were described. The results presented, together with watershed measurements, when available, are expected to enhance understanding of the hydrological responses of ecosystems to indiscriminate charcoal production and related activities in this region.
Resumo:
Phosphorus fractions were determined in soil samples from areas fertilized or not with farmyard cattle manure (FYM) and in samples of FYM used in the semi-arid region of Paraiba state, Brazil. Soil samples were taken from the 0-20; 20-40 and 40-60 cm layers of 18 cultivated areas, which, according to interviews with farmers, had been treated with 12 to 20 t ha-1 FYM annually, for the past 2 to 40 years. Soil samples were also collected from four unfertilized pasture areas as controls. Phosphorus in the soil samples was sequentially extracted with water (Pw), resin (Pres), NaHCO3 (Pi bic and Po bic), NaOH (Pi hid and Po hid), H2SO4 (Pacid) and, finally, by digestion with H2SO4/H2O2 (Presd). Nine FYM samples were extracted with water, resin, Mehlich-1, H2SO4, NaOH or digestion with H2SO4/H2O2, not sequentially, and the extracts analyzed for P. The sampled areas had homogeneous, sandy and P-deficient soils; increases in total soil P (Pt) above the mean value of the control areas (up to 274 mg kg-1 in the 0-20 cm layer of the most P-enriched samples) were therefore attributed to FYM applications, which was the only external P input in the region. Regression analysis was used to study the relationship between soil P fractions and Pt. The Pacid fraction, related to Ca-P forms, showed the greatest increases (p < 0.01) as a result of FYM applications, rising from 8.4 mg kg-1 in a non-fertilized sample to 43.8 mg kg-1 in the sample with the highest Pt content. The sum of Pw, Pres and Pi bic, considered as labile P, showed comparable increases with Pacid, while Pi hid showed the smallest increase due to FYM applications. Organic P forms also increased, more so the fraction Po hid, considered less labile, than the more labile one, Po bic. The residual P fraction was practically half of Pt, independently of the Pt value. Increases in labile P, Pacid and organic P were justified by the high average concentration of Pw (36 %), Pacid (34 %), and Po hid (30 %) in the FYM. Significant changes in the proportion of P forms among soil layers indicated the downward movement of P in organic forms.
Resumo:
It is well-known that Amazon tropical forest soils contain high microbial biodiversity. However, anthropogenic actions of slash and burn, mainly for pasture establishment, induce profound changes in the well-balanced biogeochemical cycles. After a few years the grass yield usually declines, the pasture is abandoned and is transformed into a secondary vegetation called "capoeira" or fallow. The aim of this study was to examine how the clearing of Amazon rainforest for pasture affects: (1) the diversity of the Bacteria domain evaluated by Polymerase Chain Reaction and Denaturing Gradient Gel Electrophoresis (PCR-DGGE), (2) microbial biomass and some soil chemical properties (pH, moisture, P, K, Ca, Mg, Al, H + Al, and BS), and (3) the influence of environmental variables on the genetic structure of bacterial community. In the pasture soil, total carbon (C) was between 30 to 42 % higher than in the fallow, and almost 47 % higher than in the forest soil over a year. The same pattern was observed for N. Microbial biomass in the pasture was about 38 and 26 % higher than at fallow and forest sites, respectively, in the rainy season. DGGE profiling revealed a lower number of bands per area in the dry season, but differences in the structure of bacterial communities among sites were better defined than in the wet season. The bacterial DNA fingerprints in the forest were stronger related to Al content and the Cmic:Ctot and Nmic:Ntot ratios. For pasture and fallow sites, the structure of the Bacteria domain was more associated with pH, sum of bases, moisture, total C and N and the microbial biomass. In general microbial biomass in the soils was influenced by total C and N, which were associated with the Bacteria domain, since the bacterial community is a component and active fraction of the microbial biomass. Results show that the genetic composition of bacterial communities in Amazonian soils changed along the sequence forest-pasture-fallow.
Resumo:
The biodiversity of rhizobium in soils of the São Francisco Valley is unknown and can be studied using cowpea as trap plants. The objective of this study was to verify the diversity of diazotrophic bacteria that nodulate cowpea in soils of the lower half of the São Francisco River Valley by morphological and genotypic characterization. Seven soil samples (A1, A2, A3, A4, C1, C2 and MC) were collected to capture bacteria associated to five cowpea cultivars (IPA 206, BRS Pujante, BRS Marataoã, Canapu Roxo, and Sempre Verde), in a 5x7 factorial design with three replications. Thirty days after plant emergence, the nodules were collected and the bacteria isolated and analyzed in relation to their growth characteristics in YMA medium. The 581 isolates were grouped in 49 morphologic groups. Of this total, 62.3 % formed colonies in up to three days, 33.4 % grew from the 6th day on, and 4.3 % began to grow 4 to 5 days after incubation. Regarding the formation of acids and alkalis, 63 % acidified the medium, 12 % made it alkaline and 25 % maintained the medium at neutral pH. The highest diversity was observed in the A3 sample and in isolates associated with the cultivars Canapu Roxo and BRS Pujante. Thirty-eight representative isolates were chosen for the genotypic characterization, clustered in four groups based on the restriction analysis of 16s rDNA. This grouping was strongly correlated with the sampling site; 13 rhizobium isolates had an electrophoretic profile distinct from the standard rhizobium strains used in this study.
Resumo:
Systematic pig slurry application to crop soils may lead to the accumulation of heavy metals in regions with intensive pig raising. The aim of this study was to evaluate the accumulation of Cu, Zn and Mn in soils under systematic pig slurry application. For this purpose, soil samples were collected from two of the most representative watersheds of Santa Catarina where the predominant activity is pig raising. In each watershed, 12 properties were chosen to evaluate the different systems of pig husbandry (complete cycle (CC), farrowing (FaU) and finishing units (FiU)). Based on information of the producers, soil samples were collected in areas with and without systematic manure application. To determine the total Cu, Zn and Mn content in soils and manure, a methodology proposed by the Environmental Protection Agency of the United States (USEPA), method nº 3050B, was used. For the available heavy metal content, Cu and Zn was extracted with HCl 0.1 mol L-1 and Mn with KCl 1 mol L-1. Data were subjected to multivariate analysis, using the canonical discriminant analysis to identify the metals that best differentiate the soils studied within each swine housing system. Successive pig slurry applications cause an increase in Cu, Zn and Mn availability in the soil and this indicates the need for monitoring of the metal concentrations over time. The critical values of Cu in the soil can be reached and exceeded more rapidly than Zn. The results showed that the soil type may be one of the attribute underlying the determination of public policies in pig raising and waste management because soils such as Inceptisols were shown to be more prone to possible contamination since they may more rapidly reach total critical Cu levels.
Resumo:
In prehistoric times, innumerous shell middens, called "sambaquis", consisting mainly of remains of marine organisms, were built along the Brazilian coast. Although the scientific community took interest in these anthropic formations, especially since the nineteenth century, their pedological context is still poorly understood. The purpose of this study was to characterize and identify the physical and chemical changes induced by soil-forming processes, as well as to compare the morphology of shell midden soils with other, already described, anthropogenic soils of Brazil. Four soil profiles developed from shell middens in the Região dos Lagos - RJ were morphologically described and the physical and chemical properties determined. The chemical analysis showed that Ca, Mn, Mg, and particularly P and Zn are indicators of anthropic horizons of midden soils, as in the Amazon Dark Earths (Terras Pretas de Índio). After the deposition of P-rich material, P reaction and leaching can mask or disturb the evidence of in situ man-made strata, but mineralogical and chemical studies of phosphate forms can elucidate the apparent complexity. Lower phosphate-rich strata without direct anthropic inputs indicate P leaching and precipitation in secondary forms. The total and bioavailable contents of Ca, Mg, Zn, Mn, Cu, P, and organic C of midden soils were much higher than of regional soils without influence of ancient human settlements, demonstrating that the high fertility persisted for long periods, at some sites for more than 4000 years. The physical analysis showed that wind-blown sand contributed significantly to increase the sand fraction in the analyzed soils (texture classes sand, sandy loam and sandy clay loam) and that the aeolian sand accumulation occurred simultaneously with the midden formation.
Resumo:
The study of the ecology of soil microbial communities at relevant spatial scales is primordial in the wide Amazon region due to the current land use changes. In this study, the diversity of the Archaea domain (community structure) and ammonia-oxidizing Archaea (richness and community composition) were investigated using molecular biology-based techniques in different land-use systems in western Amazonia, Brazil. Soil samples were collected in two periods with high precipitation (March 2008 and January 2009) from Inceptisols under primary tropical rainforest, secondary forest (5-20 year old), agricultural systems of indigenous people and cattle pasture. Denaturing gradient gel electrophoresis of polymerase chain reaction-amplified DNA (PCR-DGGE) using the 16S rRNA gene as a biomarker showed that archaeal community structures in crops and pasture soils are different from those in primary forest soil, which is more similar to the community structure in secondary forest soil. Sequence analysis of excised DGGE bands indicated the presence of crenarchaeal and euryarchaeal organisms. Based on clone library analysis of the gene coding the subunit of the enzyme ammonia monooxygenase (amoA) of Archaea (306 sequences), the Shannon-Wiener function and Simpson's index showed a greater ammonia-oxidizing archaeal diversity in primary forest soils (H' = 2.1486; D = 0.1366), followed by a lower diversity in soils under pasture (H' = 1.9629; D = 0.1715), crops (H' = 1.4613; D = 0.3309) and secondary forest (H' = 0.8633; D = 0.5405). All cloned inserts were similar to the Crenarchaeota amoA gene clones (identity > 95 %) previously found in soils and sediments and distributed primarily in three major phylogenetic clusters. The findings indicate that agricultural systems of indigenous people and cattle pasture affect the archaeal community structure and diversity of ammonia-oxidizing Archaea in western Amazon soils.
Resumo:
Knowledge of the soil physical properties, including the clay content, is of utmost importance for agriculture. The behavior of apparently similar soils can differ in intrinsic characteristics determined by different formation processes and nature of the parent material. The purpose of this study was to assess the efficacy of separate or combined pre-treatments, dispersion methods and chemical dispersant agents to determine clay in some soil classes, selected according to their mineralogy. Two Brazilian Oxisols, two Alfisols and one Mollisol with contrasting mineralogy were selected. Different treatments were applied: chemical substances as dispersants (lithium hydroxide, sodium hydroxide, and hexametaphosphate); pre-treatment with dithionite, ammonium oxalate, and hydrogen peroxide to eliminate organic matter; and coarse sand as abrasive and ultrasound, to test their mechanical action. The conclusion was drawn that different treatments must be applied to determine clay, in view of the soil mineralogy. Lithium hydroxide was not efficient to disperse low-CEC electropositive soils and very efficient in dispersing high-CEC electronegative soils. The use of coarse sand as an abrasive increased the clay content of all soils and in all treatments in which dispersion occurred, with or without the use of chemical dispersants. The efficiency of coarse sand is not the same for all soil classes.