423 resultados para Soil compaction.
em Scielo Saúde Pública - SP
Resumo:
During timber exploitation in forest stands harvesting machines pass repeatedly along the same track and can cause soil compaction, which leads to soil erosion and restricted tree root growth. The level of soil compaction depends on the number of passes and weight of the wood load. This paper aimed to evaluate soil compaction and eucalyptus growth as affected by the number of passes and wood load of a forwarder. The study was carried out in Santa Maria de Itabira county, Minas Gerais State - Brazil, on a seven-year-old eucalyptus stand planted on an Oxisol. The trees were felled by chainsaw and manually removed. Plots of 144 m² (four rows 12 m long in a 3 x 2 m spacing) were then marked off for the conduction of two trials. The first tested the traffic intensity of a forwarder which weighed 11,900 kg and carried 12 m³ wood (density of 480 kg m-3) and passed 2, 4, and 8 times along the same track. In the second trial, the forwarder carried loads of 4, 8, and 12 m³ of wood, and the machine was driven four times along the same track. In each plot, the passes affected four rows. Eucalyptus was planted in 30 x 30 x 30 cm holes on the compacted tracks. The soil in the area is clayey (470 clay and 440 g kg-1 sand content) and at depths of 0-5 cm and 5-10 cm, respectively, soil organic carbon was 406 and 272 g kg-1 and the moisture content during the trial 248 and 249 g kg-1. These layers were assessed for soil bulk density and water-stable aggregates. The infiltration rate was measured by a cylinder infiltrometer. After 441 days the measurements were repeated, with additional analyses of: soil organic carbon, total nitrogen, N-NH4+, N-NO3-, porosity, and penetration resistance. Tree height, stem diameter, and stem dry matter were measured. Forwarder traffic increased soil compaction, resistance to penetration and microporosity while it reduced the geometric mean diameter, total porosity, macroporosity and infiltration rate. Stem dry matter yield and tree height were not affected by soil compaction. Two passes of the forwarder were enough to cause the disturbances at the highest levels. The compaction effects were still persistent 441 days after forwarder traffic.
Resumo:
The impact of wood loads on bulk density and preconsolidation pressure and of harvester and forwarder traffic on rut depth, bulk density and preconsolidation pressure of two Ultisols were examined in this study. Our objective was to quantify the threshold beyond which significant soil compaction and rutting would occur. This study was carried out in the county of Eunápolis, state of Bahia, Brazil, (16 º 23 ' 17 '' S and 39 º 10 ' 06 '' W; altitude 80 m asl) in two Ultisols (PAd2 and PAd3) with different texture classes, in experimental areas with eucalypt plantation. The study involved measurements at the wood load site and machine driving at specific locations in the forest during logging operations. The treatments consisted of one harvester pass and, 8, 16 and 40 passes of a fully loaded forwarder. Thresholds were established based on the rut depth and percentage of preconsolidation pressure values in the region of additional soil compaction defined in the bearing capacity model. The percentage of soil samples with values of preconsolidation pressure in the region of additional soil compaction indicated a greater susceptibility of PAd3 than of PAd2 to soil compaction. The threshold levels established here based on preconsolidation pressure and rut depth indicated that no more than eight forwarder passes should be allowed in loading operations in order to minimize soil compaction.
Resumo:
The Cerrado (Brazilian Savannah) plays an important economic and financial role in the nation, since the pastures of this biome feed cattle for half of the domestic bovine meat productivity, and its agricultural fields produce a third of the country's grain. The variability and spatial dependence between the soil physical attributes and soybean yield were evaluated in a crop rotation planted on a degraded brachiaria pasture, on a dystroferric Red Latosol of an experimental farm of the State University of São Paulo (UNESP), in the 2005/2006 growing season. The linear and spatial correlations between these attributes were also studied, to determine conditions that would allow increased agricultural productivity. In the above pasture area, a grid was installed with 124 plots, spaced 10.0 x 10.0 m and 5.0 x 5.0 m apart, in a total area of 7,500 m². From the linear and spatial point of view, the high grain yield can be explained by the number of grains per plant and soil macroporosity. The high variability observed for most soil properties indicated that the crop - livestock integration system results in environmental heterogeneity of the soil.
Resumo:
ABSTRACT Soil tillage that maintains the productivity of sugarcane plantations, providing an area for the root development and without traffic on crop rows, has given rise to new technologies in rural areas. The purpose of this study was to evaluate the soil physical properties in two sugarcane plantations, one of which was prepared with deep tilling and the other with conventional tillage. The experiment was conducted in Lençóis Paulista, São Paulo State. Soil penetration resistance and relative density were analyzed. The cone index was lower in deep-tilled soil without traffic in all layers, than in deep-tilled soil with traffic and in conventional tillage. In both tillage treatments, the relative density values were acceptable in the 0.00-0.15 m soil layer, but considered detrimental for sugarcane development in the 0.15-0.30 and 0.30-0.45 m layers.
Resumo:
ABSTRACT Increasing attention has recently been given to sweet sorghum as a renewable raw material for ethanol production, mainly because its cultivation can be fully mechanized. However, the intensive use of agricultural machinery causes soil structural degradation, especially when performed under inadequate conditions of soil moisture. The aims of this study were to evaluate the physical quality of aLatossolo Vermelho Distroférrico (Oxisol) under compaction and its components on sweet sorghum yield forsecond cropsowing in the Brazilian Cerrado (Brazilian tropical savanna). The experiment was conducted in a randomized block design, in a split plot arrangement, with four replications. Five levels of soil compaction were tested from the passing of a tractor at the following traffic intensities: 0 (absence of additional compaction), 1, 2, 7, and 15 passes over the same spot. The subplots consisted of three different sowing times of sweet sorghum during the off-season of 2013 (20/01, 17/02, and 16/03). Soil physical quality was measured through the least limiting water range (LLWR) and soil water limitation; crop yield and technological parameters were also measured. Monitoring of soil water contents indicated a reduction in the frequency of water content in the soil within the limits of the LLWR (Fwithin) as agricultural traffic increased (T0 = T1 = T2>T7>T15), and crop yield is directly associated with soil water content. The crop sown in January had higher industrial quality; however, there was stalk yield reduction when bulk density was greater than 1.26 Mg m-3, with a maximum yield of 50 Mg ha-1 in this sowing time. Cultivation of sweet sorghum as a second crop is a promising alternative, but care should be taken in cultivation under conditions of pronounced climatic risks, due to low stalk yield.
Resumo:
The objective of this work was to determine, through the use of the bearing capacity model, the traffic effects of the forest harvest operations on the preconsolidation pressure (sigmap), during one cycle of the eucalyptus plantation. The work was conducted using undisturbed soil samples, collected at the surface of the A horizon and in the top of the B horizon of an Udult (PA), Aquox (FX) and Udox (LA) soils. The undisturbed soil samples were used in the uniaxial compression tests. The soil sampling was done before and after the harvest operations. The operations performed with the Forwarder caused greater soil compaction than the ones done with the Feller Büncher and Harvester. The percentage of soil samples, in the region with additional soil compaction, indicated that the Udult was the soil class more susceptible to soil compaction, followed by the Aquox and Udox. Despite Udult is the more susceptible to soil compaction, the regeneration of the soil structure in this soil class was more efficient than in Aquox. The percentage of soil samples with sigmap values in the region with additional soil compaction in 1996, 1998 and 2004, after harvest operations, indicated a sustainable forest exploration in this period.
Resumo:
The research aimed to evaluate machine traffic effect on soil compaction and the least limiting water range related to soybean cultivar yields, during two years, in a Haplustox soil. The six treatments were related to tractor (11 Mg weight) passes by the same place: T0, no compaction; and T1*, 1; T1, 1; T2, 2; T4, 4 and T6, 6. In the treatment T1*, the compaction occurred when soil was dried, in 2003/2004, and with a 4 Mg tractor in 2004/2005. Soybean yield was evaluated in relation to soil compaction during two agricultural years in completely randomized design (compaction levels); however, in the second year, there was a factorial scheme (compaction levels, with and without irrigation), with four replicates represented by 9 m² plots. In the first year, soybean [Glycine max (L.) Merr.] cultivar IAC Foscarim 31 was cultivated without irrigation; and in the second year, IAC Foscarim 31 and MG/BR 46 (Conquista) cultivars were cultivated with and without irrigation. Machine traffic causes compaction and reduces soybean yield for soil penetration resistance between 1.64 to 2.35 MPa, and bulk density between 1.50 to 1.53 Mg m-3. Soil bulk density from which soybean cultivar yields decrease is lower than the critical one reached at least limiting water range (LLWR =/ 0).
Resumo:
In Cerrado soils under grazing, changes occur in physical attributes, such as increased density, decreasing on the size of water stable aggregates, and macroporosity reduction. Thus, the aim of this study was to study the effect of compaction on the establishment of two forages. It was adopted a completely randomized design with three replications, in 2 x 4 factorial design, and two forages (Xaraés grass and Marandu grass), and four levels of compaction (soil densities of 1.0, 1.2, 1.4, and 1.6 Mg m-3). The following variables were evaluated 48 days after sowing: tiller population, plant height, dry matter production of shoots and components, leaf and stem, as well as the root dry mass. The stem dry mass decreased with soil density in a similar manner for both forages. It was observed that the leaf dry mass and shoots dry mass of Xaraés grass remained constant in the levels of soil compaction, not adjusting to any regression model. The establishment of Xaraés grass has not been negatively affected by compaction, which may be suitable for situations where there may be layers that restrict the growth of different forages.
Resumo:
Soil water properties are related to crop growth and environmental aspects and are influenced by the degree of soil compaction. The objective of this study was to determine the water infiltration and hydraulic conductivity of saturated soil under field conditions in terms of the compaction degree of two Oxisols under a no-tillage (NT). Two commercial fields were studied in the state of Rio Grande do Sul, Brazil: one a Haplortox after 14 years under NT; the other a Hapludox after seven years under NT. Maps (50 x 30 m) of the levels of mechanical penetration resistance (PR) were drawn based on the kriging method, differentiating three compaction degrees (CD): high, intermediate and low. In each CD area, the infiltration rate (initial and steady-state) and cumulative water infiltration were measured using concentric rings, with six replications, and the saturated hydraulic conductivity (K(θs)) was determined using the Guelph permeameter. Statistical evaluation was performed based on a randomized design, using the least significant difference (LSD) test and regression analysis. The steady-state infiltration rate was not influenced by the compaction degree, with mean values of 3 and 0.39 cm h-1 in the Haplortox and the Hapludox, respectively. In the Haplortox, saturated soil hydraulic conductivity was 26.76 cm h-1 at a low CD and 9.18 cm h-1 at a high CD, whereas in the Hapludox, this value was 5.16 cm h-1 and 1.19 cm h-1 for the low and high CD, respectively. The compaction degree did not affect the initial and steady-state water infiltration rate, nor the cumulative water infiltration for either soil type, although the values were higher for the Haplortox than the Hapludox.
Resumo:
Compaction is one of the most destructive factors of soil quality, however the effects on the microbial community and enzyme activity have not been investigated in detail so far. The objective of this study was to evaluate the effects of soil compaction caused by the traffic of agricultural machines on the soil microbial community and its enzyme activity. Six compaction levels were induced by tractors with different weights driving over a Eutrustox soil and the final density was measured. Soil samples were collected after corn from the layers 0-0.10 and 0.10-0.20 m. The compaction effect on all studied properties was evident. Total bacteria counts were reduced significantly (by 22-30 %) and by 38-41 % of nitrifying bacteria in the soil with highest bulk density compared to the control. On the other hand, fungi populations increased 55-86 % and denitrifying bacteria 49-53 %. Dehydrogenase activity decreased 20-34 %, urease 44-46 % and phosphatase 26-28 %. The organic matter content and soil pH decreased more in the 0-0.10 than in the 0.10-0.20 m layer and possibly influenced the reduction of the microbial counts, except denitrifying bacteria, and all enzyme activities, except urease. Results indicated that soil compaction influences the community of aerobic microorganisms and their activity. This effect can alter nutrient cycling and reduce crop yields.
Resumo:
To express the negative effects of soil compaction, some researchers use critical values for soil mechanical strength that severely impair plant growth. The aim of this study was to identify this critical compaction depth, to test the functionality of a new, portable penetrometer developed from a spring dynamometer, and compare it to an electronic penetrometer traditionally used in compaction studies of agricultural soils. Three soils with distinct texture were conventionally tilled using a disk plow, and cultivated with different plant species. The critical soil resistance defined to establish critical compaction depth was equal to 1.5 MPa. The results of the new equipment were similar to the electronic penetrometer, indicating its viability as a tool for assessing the soil physical conditions for plant growth.
Resumo:
Currently in Brazil, as in other parts of the world, the concern is great with the increase of degraded agricultural soil, which is mostly related to the occurrence of soil compaction. Although soil texture is recognized as a very important component in the soil compressive behaviors, there are few studies that quantify its influence on the structural changes of Latosols in the Brazilian Cerrado region. This study aimed to evaluate structural changes and the compressive behavior of Latosols in Rio Verde, Goiás, through the modeling of additional soil compaction. The study was carried out using five Latosols with very different textures, under different soil compaction levels. Water retention and soil compression curves, and bearing capacity models were determined from undisturbed samples collected on the B horizons. Results indicated that clayey and very clayey Latosols were more susceptible to compression than medium-textured soils. Soil compression curves at density values associate with edaphic functions were used to determine the beneficial pressure (σ b) , i.e., pressure with optimal water retention, and critical pressure (σcrMAC), i.e., pressure with macroporosity below critical levels. These pressure values were higher than the preconsolidation pressure (σp), and therefore characterized as additional compaction. Based on the compressive behavior of these Latosols, it can be concluded that the combined preconsolidation pressure, beneficial pressure and critical pressure allow a better understanding of compression processes of Latosols.
Resumo:
Soil compaction has been recognized as a severe problem in mechanized agriculture and has an influence on many soil properties and processes. Yet, there are few studies on the long-term effects of soil compaction, and the development of soil compaction has been shown through a limited number of soil parameters. The objectives of this study were to evaluate the persistence of soil compaction effects (three traffic treatments: T0, without traffic; T3, three tractor passes; and T5, five tractor passes) on pore system configuration, through static and dynamic determinations; and to determine changes in soil pore orientation due to soil compaction through measurement of hydraulic conductivity of saturated soil in samples taken vertically and horizontally. Traffic led to persistent changes in all the dynamic indicators studied (saturated hydraulic conductivity, K0; effective macro- and mesoporosity, εma and εme), with significantly lower values of K0, εma, and εme in the T5 treatment. The static indicators of bulk density (BD), derived total porosity (TP), and total macroporosity (θma) did not vary significantly among the treatments. This means that machine traffic did not produce persistent changes on these variables after two years. However, the orientation of the soil pore system was modified by traffic. Even in T0, there were greater changes in K0 measured in the samples taken vertically than horizontally, which was more related to the presence of vertical biopores, and to isotropy of K0 in the treatments with machine traffic. Overall, the results showed that dynamic indicators are more sensitive to the effects of compaction and that, in the future, static indicators should not be used as compaction indicators without being complemented by dynamic indicators.
Resumo:
The system of no-till sowing stands out as being a technology that suits the objectives of more rational use of the soil and greater protection against the erosion. However, through till, any of it, occurs modifications of the soil's structure. This current work aims to study the influence of the energy state of the water and of the organic matter on the mechanism of compaction of Red Oxisol under no-till management system. Humid and non-deformed sample were collected in horizon AP of two agricultural areas under no-till, with and without rotation of cultures. In the laboratory, these samples were broken into fragments and sifted to obtain aggregates of 4 to 5 mm sized, which were placed in equilibrium under four matrix potentials. Thereafter, they were exposed to uni-dimensional compression with pressures varying from 32 to 1,000 kPa. The results in such a way show that the highest compressibility of aggregates both for the tilling with rotation of cultures as for the tilling without rotation of cultures, occurred for matrix potential -32 kPa (humidity of 0.29-0.32 kg kg-1, respectively), while the minor occurred for the potentials of -1 and -1,000 kPa (humidity of 0.35 and 0.27 kg kg-1, respectively), indicating that this soil should not be worked with humidity ranging around 0.29 to 0.32 kg kg-1 and the highest reduction of volume of aggregates was obtained for the mechanical pressures lower than 600 inferior kPa, indicating that these soils showed to be very influenced by compression, when exposed to mechanical work. Also, the aggregates of soil under no-till and rotation of crops presented higher sensitivity to the compression than the aggregates of soil under no-till and without rotation of crops, possibly for having better structural conditions given to a higher content of organic matter.
Resumo:
Pasture productivity can drop due to soil compaction caused by animal trampling. Physical and mechanical alterations are therefore extremely important indicators for pasture management. The objective of this research was to: draw and evaluate the Mohr failure line of a Red Yellow Latossol under different pasture cycles and natural forest; calculate apparent cohesion; observe possible physical alterations in this soil; and propose a correction factor for stocking rates based on shear strength properties. This study was conducted between March/2006 and March/2007 on the Experimental Farm of Fundação de Ensino Superior de Passos, in Passos, state of Minas Gerais. The total study area covered 6 ha, of which 2 ha were irrigated pasture, 2 ha non-irrigated pasture and 2 ha natural forest. Brachiaria brizantha cv. MG-5 Vitória was used as forage plant. The pasture area was divided into paddocks. The Mohr failure line of samples of a Red Yellow Latossol under irrigated pasture equilibrated at a tension of water content of 6 kPa indicated higher shear strength than under non-irrigated pasture. The shear strength under irrigated pasture and natural forest was higher than under non-irrigated pasture. At a tension of water content of 33 kPa no difference was found in shear strength between management and use. Possible changes in soil structure were caused by apparent cohesion. The values of the correction factor were close to 1, which may indicate a possible soil compaction in prolonged periods of management.