86 resultados para Silica surface
em Scielo Saúde Pública - SP
Resumo:
The water soluble material, 3-n-propyl-1-azonia-4-azabicyclo[2.2.2]octanechloride silsesquioxane (dabcosil silsesquioxane) was obtained. The dabcosil silsesquioxane was grafted onto a silica surface, previously modified with aluminum oxide. The resulting solid, dabcosil-Al/SiO2, presents 0.15 mmol of dabco groups per gram of material. The product of the grafting reaction was analyzed by infrared spectroscopy and N2 adsorption-desorption isotherms. The dabcosil-Al/SiO2 material was used as sorbent for chromium (VI) adsorption in aqueous solution.
Resumo:
The aim of this work was to optimize the preparation of electrodes with riboflavin (RF) immobilized on a silica surface modified with niobium oxide and carbon paste. Electrode preparation was optimized employing a factorial design consisting of two levels and three factors. The electrochemical properties of immobilized RF were investigated by cyclic voltammetry. The factorial analysis was carried out analysing the current intensity (Ipa). It was possible to optimize the electrode to get the best reversibility in the redox process, i. e. the lowest separation between anodic and cathodic peak potentials and a current ratio close to unity. The concentration of supporting electrolyte has a small effect. The proportion has the highest effect and the interaction factor between proportion and mixture has also a significant effect on the current intensity.
Resumo:
Aluminum oxide was dispersed on a commercial silica gel surface, using successive grafting reactions. The reaction products were characterized by N2 adsorption-desorption isotherms, scanning electron microscopy and infrared spectroscopy. The progressive incorporation of aluminum, up to 5.5% (w/w), does not produce agglomeration of alumina, since changes in the original pore size distribution of the silica matrix were not observed. The aluminum oxide covers homogeneously the silica surface.
Resumo:
The silica gel was obtained from sand and its surface was modified with POCl3 to produce Si-Cl bonds on the silica surface. Ethylenediamine was covalently bonded onto the chlorinated silica surface. The adsorption of the chlorides of divalent cobalt, nickel and copper was qualitatively studied to show that the bonding of ethylenediamine onto the silica gel surface produces a solid base capable of chelating metal ions from solution. The experiments illustrate the extraction of silica gel, its reactivity, the development of modified surfaces and its application in removing metal ions from water and are deigned for undergraduate inorganic chemistry laboratories.
Resumo:
This work describes three C8-stationary phases for high performance liquid chromatography based on silica metallized with ZrO2, TiO2 or Al2O3 layers, having poly(methyloctylsiloxane) immobilized onto their surfaces. The stationary phases were characterized using XRF, XAS, FTIR, SEM and elemental analysis to determine the physical characteristics of the oxide and polysiloxane layers formed on the surfaces and chromatographically to evaluate the separation parameters. The results show the changes on the silica surface and allowed proposing a structure for the oxide layer, being observed tetrahedral and octahedral structures, what is completely new in the literature. The formation of a homogeneous layer of metallic oxide (TiO2 and ZrO2) was observed on the silica. The C8-titanized and C8-aluminized stationary phases presented good chromatographic performances, with good values of asymmetry and efficiency. All stationary phase presented few loss of the polymeric layer after the HPLC, indicating that this layer is well attached on the metalized support.
Resumo:
C18 chemically bonded sorbents have been the main materials used in solid phase extraction (SPE). However, due their high hydrophobicity some hydrophobic solutes are strongly retained leading to the consumption of larger quantities of organic solvent for efficient recoveries. This work presents a sorbent with lower hydrophobicity but similar selectivity to the C18 sorbent, prepared by thermal immobilization of poly(dimethylsiloxane-co-alkylmethylsiloxane) (PDAS) on silica. PDAS has organic chains with methyl groups alternating with octadecyl or hexadecyl groups in its monomeric unities. For the Si(PDAS) sorbent presented, the polymeric layer was physically adsorbed on the silica surface with 12% carbon load. Although the coating of silica with the polymeric layer was incomplete, the PDAS provided better protection for the silica surface groups, promoting mostly hydrophobic interactions between analytes and the sorbent. Sorption isotherm studies revealed that the retention of hydrophobic solutes on Si(PDAS) was less intense than on conventional sorbents, confirming the lower hydrophobicity of the lab-made sorbent. Additional advantages of Si(PDAS) include simplicity and low cost of preparation, making this material a potential sorbent for the analysis of highly hydrophobic solutes.
Resumo:
Enzyme-support strategies are increasingly replacing conventional chemical methods in both laboratories and industries with attributes including efficiency, higher performance and multifarious use, where silica surfaces show potential due to the chemical bonds based on the presence of hydroxyl groups which can be modified with different additives. Surface-modified silica is a novel class of materials capable of improving enzyme stability and reusability that can be applied to support several immobilization techniques. This review describes the use of innovative modified supports to improve the state of enzyme immobilization and provide the industrial sector with new perspectives.
Resumo:
The obtention of silica and cyclodextrin hybrid materials was accomplished by refluxing them in xylol using citric acid as a binding agent. The materials were characterized by infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, scanning electron microscopy, and elemental analysis. Evidence for the docking of cyclodextrins α and γ was substantiated based on the variation in band intensity for groups such as ≡Si-OH. Additional docking evidence includes the displacement of some of the bands that are related to cyclodextrin such as the deformation of the C-H axial bond. The α and γ-CDSi materials were characterized as amorphous compounds. The products obtained in the synthesis showed changes in the decomposition temperatures of their isolated constituents, in which the mass of α and γ-CD docked to the silica surface gave the estimated values of 41% and 47%, respectively. The elemental constituents were shown to be consistent and close to their relative theoretical values. Thermogravimetric analysis showed that a reduction in the percentage of the hybrids was proportional to the amount of lost mass. This new material is an improvement over synthesized organosilane materials because the operator and the environment benefit from a less toxic methodology. In addition, the material has several potential applications in complexation systems with cyclodextrin.
Resumo:
This work describes the sol-gel mixed oxide SiO2/TiO2 property, ST, as prepared, and submitted to heat treatment a 773 K, STC. SEM and EDS images show, within magnification used, a uniform distribution of the TiO2 particles in SiO2/TiO2 matrix. Both, ST and STC adsorb hydrogen peroxide on the surface and through EPR and UV-Vis diffuse reflectance spectra, it was possible to conclude that the species on the surface is the peroxide molecule attached to the Lewis acid site of titanium particle surface, alphaTi(H2O2)+. As the material is very porous, presumably the hydrogen peroxide molecule is confined in the matrix pores on the surface, a reason why the adsorbed species presents an exceptional long lived stability.
Resumo:
Glasses with low silica content are very susceptible to suffer pronounced degradation when exposed to room atmosphere during short times. In this work the results of the degradation of the surface of a metasilicate glass with composition 2Na2O.1CaO.3SiO2 are presented. Optical and scanning electron microscopy observations, X-ray diffraction, infrared and Raman microprobe spectroscopic measurements of the modified surface of this glass show strong evidences that it is formed essentially by a crystalline carbonate layer.
Resumo:
In this work it is carried out a review on structural parameters related to the evaluation of pore connectivity of nanostructures. The work describes parameters and methods of evaluation of geometric parameters. The concepts of connectivity are applied to silica gels and glasses obtained from sol-gel process. The study of pores connectivity was carried out using a combination of geometric modeling and experimental evaluation of specific surface area and pore volume. The permeability of the pore structure is evaluated and a permeability geometric factor, Pg, is proposed.
Resumo:
The objective of this work was to synthesize nanosilicas with different degree of hydrophobicity by the sol-gel method, using tetraethyl orthosilicate as a precursor. For this purpose, 3-aminopropyl triethoxysilane (APS) and 1,1,1,3,3,3 - hexamethyldisilazane (HMDS), were added during synthesis as modifiers. A commercial biopolymer (Hexamoll Dinch, BASF) intended for packaging of apples, was added to the new nanosilicas. The materials obtained were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, potentiometric titration, porosity, specific surface area and hydrophobicity/hydrophilicity by wetting test. Colorimetry was used to evaluate change in apple pulp color after contact with the different silicas.
Resumo:
Rice husk silica (RHS) and NaY were used as supports for potassium (K) prepared from acetate buffer (B) and acetate (A) solutions. K loading did not destroy the NaY structure, but it caused a decrease in the surface area; the K species resided in micropores and on the external surface. In contrast, K loading resulted in the collapse and a decrease in the surface area of RHS. It was found that 12K/NaY-B was the most active catalyst for the transesterification of Jatropha seed oil. The minimum K content in K/NaY-B that provided complete conversion of the Jatropha seed oil was 11 wt%, and the biodiesel yield was 77.9%.
Resumo:
Mordenite (MOR) was synthesized using rice husk silica and modified by base (B), acid (A) or acid-base (AB) and converted to H-form. The modification did not destroy the MOR structure but increased surface area and generated mesopores. Lewis acidity of the parent and modified MOR samples investigated by aluminum NMR and NH3-TPD showed a decrease in the following order: HMOR > BMOR > ABMOR > AMOR. For the catalytic transformation of methylbutynol, ABMOR provided the highest conversion and selectivity of products from acid sites.
Resumo:
Silica gel chemically modified with 2-Aminotiazole groups, abbreviated as SiAT, was used for preconcentration of copper, zinc, nickel and iron from kerosene, normally used as a engine fuel for airplanes. Surface characteristics and surface area of the silica gel were obtained before and after chemical modification using FT-IR, Kjeldhal and surface area analysis (B.E.T.). The retention and recovery of the analyte elements were studied by applying batch and column techniques. The experimental parameters, such as shaking time in batch technique, flow rate and concentration of the eluent (HCl- 0.25-2.00 mol L-1) and the amount of silica, on retention and elution, have been investigated. Detection limits of the method for copper, iron, nickel and zinc are 0.77, 2.92, 1.73 and 0.097 mg L-1, respectively. The sorption-desorption of the studied metal ions made possible the development of a preconcentration method for metal ions at trace level in kerosene using flame AAS for their quantification.