51 resultados para Signal Molecules
em Scielo Saúde Pública - SP
Resumo:
To explore how cytohesin-1 (CYTH-1) small interfering RNA (siRNA) influences the insulin-like growth factor receptor (IGFR)-associated signal transduction in prostate cancer, we transfected human prostate cancer PC-3 cell lines with liposome-encapsulatedCYTH-1 siRNA in serum-free medium and exposed the cells to 100 nM IGF-1. The mRNA and protein levels of the signal molecules involved in the IGFR signaling pathways were determined by real-time PCR and detected by Western blotting. The relative mRNA levels of CYTH-1, c-Myc, cyclinD1 and IGF-1R (CYTH-1 siRNA group vs scrambled siRNA group) were 0.26 vs 0.97, 0.34 vs 1.06, 0.10 vs 0.95, and 0.27 vs 0.41 (P < 0.05 for all), respectively. The relative protein levels of CYTH-1, pIGF-1R, pIRS1, pAkt1, pErk1, c-Myc, and cyclinD1 (CYTH-1 siRNA group vsscrambled siRNA group) were 0.10 vs 1.00 (30 min), 0.10 vs 0.98 (30 min), 0.04 vs 0.50 (30 min), 0.10 vs 1.00 (30 min), 0.10 vs 1.00 (30 min), 0.13 vs 0.85 (5 h), and 0.08 vs 0.80 (7 h), respectively. The tyrosine kinase activity of IGF-1R was associated with CYTH-1. The proliferative activity of PC-3 cells transfected with CYTH-1 siRNA was significantly lower than that of cells transfected with scrambled siRNA at 48 h (40.5 vs87.6%, P < 0.05) and at 72 h (34.5 vs 93.5%, P < 0.05). In conclusion, the interference of siRNA with cytohesin-1 leads to reduced IGFR signaling in prostate cancer; therefore, CYTH-1 might serve as a new molecular target for the treatment of prostate cancer.
Resumo:
OBJECTIVE: Using P-wave signal-averaged electrocardiography, we assessed the patterns of atrial electrical activation in patients with idiopathic atrial fibrillation as compared with patterns in patients with atrial fibrillation associated with structural heart disease. METHODS: Eighty patients with recurrent paroxysmal atrial fibrillation were divided into 3 groups as follows: group I - 40 patients with atrial fibrillation associated with non-rheumatic heart disease; group II - 25 patients with rheumatic atrial fibrillation; and group III - 15 patients with idiopathic atrial fibrillation. All patients underwent P-wave signal-averaged electrocardiography for frequency-domain analysis using spectrotemporal mapping and statistical techniques for detecting and quantifying intraatrial conduction disturbances. RESULTS: We observed an important fragmentation in atrial electrical conduction in 27% of the patients in group I, 64% of the patients in group II, and 67% of the patients in group III (p=0.003). CONCLUSION: Idiopathic atrial fibrillation has important intraatrial conduction disturbances. These alterations are similar to those observed in individuals with rheumatic atrial fibrillation, suggesting the existence of some degree of structural involvement of the atrial myocardium that cannot be detected with conventional electrocardiography and echocardiography.
Resumo:
OBJECTIVE: To assess signal-averaged electrocardiogram (SAECG) for diagnosing incipient left ventricular hypertrophy (LVH). METHODS: A study with 115 individuals was carried out. The individuals were divided as follows: GI - 38 healthy individuals; GII - 47 individuals with mild to moderate hypertension and normal findings on echocardiogram and ECG; and GIII - 30 individuals with hypertension and documented LVH. The magnitude vector of the SAECG was analyzed with the high-pass cutoff frequency of 40 Hz through the bidirectional four-pole Butterworth high-pass digital filter. The mean quadratic root of the total QRS voltage (RMST) and the two-dimensional integral of the QRS area of the spectro-temporal map were analyzed between 0 and 30 Hz for the frequency domain (Int FD), and between 40 and 250 Hz for the time domain (Int TD). The electrocardiographic criterion for LVH was based on the Cornell Product. Left ventricular mass was calculated with the Devereux formula. RESULTS: All parameters analyzed increased from GI to GIII, except for Int FD (GII vs GIII) and RMST log (GII vs GIII). Int TD showed greater accuracy for detecting LVH with an appropriate cutoff > 8 (sensitivity of 55%, specificity of 81%). Positive values (> 8) were found in 56.5% of the G II patients and in 18.4% of the GI patients (p< 0.0005). CONCLUSION: SAECG can be used in the early diagnosis of LVH in hypertensive patients with normal ECG and echocardiogram.
Resumo:
In the present work we have described the in vivo antimalarial actrivity of six different plants. Two of them (Verninia brasiliana and Eupatorium squalidum) were tested in a randomic approach among 273 crude extracts from plants; four (Acanhospermum australe, Esenbeckia febrifuga, Lisianthus specious and Tachia guianensis) were selected after screening 22 crude extracts from different medicinal and some of them showed antimalarial activity in vitro. Some aspects of recent research with natural products aiming to produce drugs are discussed.
Resumo:
Entamoeba histolytica, the protozoan parasite causing human amoebisis, has recently been found to comprise two genetically distinct forms, potentially pathogenic and constitutively nonpathogenic ones. Host tissue destruction by pathogenic forms is belived to result from cell functions mediaed by a lectin-type adherence receptor, a pore-forming peptide involved in host cell lysis, and abundant expression of cysteine proteinase(s). Isolation and molecular cloning of these amoeba products have provided the tools for structural analyses and manipulations of cell functions including comparisons between pathogenic and nonpathogenic forms.
Resumo:
The apical membrane antigen (AMA-1) family of malaria merozoite proteins is characterised by a high degree of inter-species conservation. Evidence that the protein (PK66/AMA-1) from the simian parasite Plasmodium knowlesi was protective in rhesus monkeys suggested that the 83kDa P. falciparum equivalent (PF83/AMA-1) should be investigated for protective effects in humans. Here we briefly review pertinent comparative data, and describe the use of an eukaryotic full length recombinant PF83/AMA-1 molecule to develop a sensitive ELISA for the determination of serological responses in endemic populations. The assay has revealed surprisingly high levels of humoral response to this quantitatively minor antigen. We also show that PK66/AMA-1 inhibitory mAb's are active against merozoites subsequent to release from schizont-infected red cells, further implicating AMA-1 molecules in red cell invasion.
Resumo:
The dual function of eosinophils has been evidenced in protective immunity against parasites as well as in pathological manifestations during allergic disorders. We have demonstrated that a new class of IgE receptors, FcepsilonRII/CD23, was involved in the functional duality of eosinophils and other proinflammatory cells. More recently, we have shown that FcepsilonRI, the high affinity IgE receptor thought to be only expressed by basophils and mast cells, was involved in eosinophil-mediated cytotoxicity against schistosomes as well as in mediator release. These results favour the view that both IgE and its receptors have been primarily associated to a protective immune response, rather than to pathology. Not only IgE receptors but also members belonging to the family of adhesion molecules can participate as co-receptors in eosinophil effector function. The inhibitory role of monoclonal antibodies to LewisX (LeX, CD15) or to selectins in eosinophil-mediated cytotoxicity towards schistosomes and the detection of LeX and 'selectin-like' molecules on schistosomula surface indicate a double interaction mediated by selectins and their carbohydrate ligands between eosinophils and schistosomula. These results suggest new functions for these adhesion molecules, previously known to be involved mainly in cell infiltration.
Resumo:
Clinical and experimental investigations suggest that allergen-specific CD4+ T-cells, IgE and the cytokines IL-4 and IL-5 play central roles in initiating and sustaining an asthmatic response by regulating the recruitment and/or activation of airways mast cells and eosinophils. IL-5 plays a unique role in eosinophil development and activation and has been strongly implicated in the aetiology of asthma. The present paper summarizes our recent investigations on the role of these cytokines using cytokine knockout mice and a mouse aeroallergen model. Investigations in IL-5-/- mice indicate that this cytokine is critical for regulating aeroallergen-induced eosinophilia, the onset of lung damage and airways hyperreactivity during allergic airways inflammation. While IL-4 and allergen-specific IgE play important roles in the regulation of allergic disease, recent investigations in IL4-/- mice suggest that allergic airways inflammation can occur via pathways which operate independently of these molecules. Activation of these IL-4 independent pathways are also intimately associated with CD4+ T-cells, IL-5 signal transduction and eosinophilic inflammation. Such IL-5 regulated pathways may also play a substantive role in the aetiology of asthma. Thus, evidence is now emerging that allergic airways disease is regulated by humoral and cell mediated processes. The central role of IL-5 in both components of allergic disease highlights the requirements for highly specific therapeutic agents which inhibit the production or action of this cytokine.
Resumo:
Activation of the eosinophil NADPH oxidase and the subsequent release of toxic oxygen radicals has been implicated in the mechanism of parasite killing and inflammation. At present, little is known of the signal transduction pathway that govern agonist-induced activation of the respiratory burst and is the subject of this review. In particular, we focus on the ability of leukotrine B4 to activate the NADPH oxidase in guinea-pig peritoneal eosinophils which can be obtained in sufficient number and purity for detailed biochemical experiments to be performed.
Resumo:
Infection of a susceptible host with the blood fluke Schistosoma mansoni results in the formation of periovular granulomas and subsequent fibrosis in the target organs. Granulomogenesis and fibrogenesis are mediated by immunological events which require cell-cell and cell-matrix interactions. In this review, the role of adhesion and co-stimulatory molecules in the genesis of the schistosomal pathology (granulomogenesis and fibrogenesis) is outlined. These molecules provide essential immunological interactions not only for the initiation of granuloma formation but also for the maintenance and modulation of the schistosomal granuloma during chronic infection. Furthermore, the role of secreted soluble adhesion molecules in the different clinical forms and in the modulation of the schistosomal granuloma is discussed. Recent new insights into the role of adhesion molecules for the induction of pathology by other developmental stages of the parasite (other than eggs) will be presented.
Resumo:
The phenotypic features acquired subsequent to antigen-specific stimulation in vitro were evaluated by means of the kinetic expressions of CD69 and CD25 activation molecules on T lymphocytes and assayed by flow cytometry in response to PPD, Ag85B, and ferritin in PPD-positive healthy control individuals. In response to PHA, CD69 staining on both CD4+ and CD8+ T cells became initially marked after 4 h, peaked at 24 h, and quickly decreased after 120 h. For CD25, a latter expression was detected around 8 h, having increased after 96 h. As expected, the response rate to the mycobacterial antigens was much lower than that to the mitogen. Positive staining was high after 96 h for CD25 and after 24 h for CD69. CD69 expression was significantly enhanced (p < 0.05) on CD8+ as compared to CD4+ T cells. High levels were also found between 96-120 h. Regarding Ag85B, CD25+ cells were mostly CD4+ instead of CD8+ T cells. Moreover, in response to ferritin, a lower CD25 expression was noted. The present data will allow further characterization of the immune response to new mycobacterial-specific antigens and their evaluation for possible inclusion in developing new diagnostic techniques for tuberculosis as well in a new vaccine to prevent the disease.
Resumo:
In Chagas disease, during the acute phase, the establishment of inflammatory processes is crucial for Trypanosoma cruzi control in target tissues and for the establishment of host/parasite equilibrium. However, in about 30% of the patients, inflammation becomes progressive, resulting in chronic disease, mainly characterized by myocarditis. Although several hypothesis have been raised to explain the pathogenesis of chagasic myocardiopathy, including the persistence of the parasite and/or participation of autoimmune processes, the molecular mechanisms underlying the establishment of the inflammatory process leading to parasitism control but also contributing to the maintenance of T. cruzi-elicited chronic myocarditis remain unsolved. Trying to shed light on these questions, we have for several years been working with murine models for Chagas disease that reproduce the acute self-resolving meningoencephalitis, the encephalitis resulting of reactivation described in immunodeficient individuals, and several aspects of the acute and chronic myocarditis. In the present review, our results are summarized and discussed under the light of the current literature. Furthermore, rational therapeutic intervention strategies based on integrin-mediated adhesion and chemokine receptor-driven recruitment of leukocytes are proposed to control T. cruzi-elicited unbalanced inflammation.
Resumo:
The immune mechanisms involved in dengue fever and dengue hemorrhagic/dengue shock syndrome are not well understood. The ex vivo activation status of immune cells during the dengue disease in patients was examined. CD4and CD8 T cells were reduced during the acute phase. Interestingly, CD8 T cells co-expressing activation marker HLA-DR, Q, P, and cytolytic granule protein-Tia-1 were significantly higher in dengue patients than in controls. Detection of adhesion molecules indicated that in dengue patients the majority of T cells (CD4 and CD8) express the activation/memory phenotype, characterized as CD44HIGH and lack the expression of the naïve cell marker, CD62L LOW. Also, the levels of T cells co-expressing ICAM-1 (CD54), VLA-4, and LFA-1 (CD11a) were significantly increased. CD8 T lymphocytes expressed predominantly low levels of anti-apoptotic molecule Bcl-2 in the acute phase, possibly leading to the exhibition of a phenotype of activated/effector cells. Circulating levels of IL-18, TGF-b1 and sICAM-1 were significantly elevated in dengue patients. Early activation events occur during acute dengue infection which might contribute to viral clearance. Differences in expression of adhesion molecules among CD4 and CD8 T cells might underlie the selective extravasation of these subsets from blood circulation into lymphoid organs and/or tissues. In addition, activated CD8 T cells would be more susceptible to apoptosis as shown by the alteration in Bcl-2 expression. Cytokines such as IL-18, TGF-b1, and sICAM-1 may be contributing by either stimulating or suppressing the adaptative immune response, during dengue infection, thereby perhaps establishing a relationship with disease severity.