16 resultados para Short Circuit, Pulse Gas Metal Arc Welding, Aluminium

em Scielo Saúde Pública - SP


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of mucosally added Escherichia coli heat stable enterotoxin (STa 30 ng ml-1) on the basal short-circuit current (Isc in µA cm-2) across stripped and unstripped sheets of jejuna and ilea taken from fed, starved (4 days, water ad lib) and undernourished (50% control food intake for 21 days) gerbil (Gerbillus cheesmani) were investigated. The effect of neurotoxin tetrodotoxin (TTX 10 µM) and the effects of replacing chloride by gluconate or the effects of removing bicarbonate from bathing buffers on the maximum increase in Isc induced by STa were also investigated. The maximum increase in Isc which resulted from the addition of STa were significantly higher in jejuna and ilea taken from starved and undernourished gerbils when compared with the fed control both using stripped and unstripped sheets. In the two regions of the small intestine taken from fed and starved animals TTX reduced the maximum increase in Isc induced by STa across unstripped sheets only. Moreover in jejuna and ilea taken from undernourished gerbils TTX reduced significantly the maximum increase in Isc induced by STa across stripped and unstripped sheets. Replacing chloride by gluconate decreased the maximum increase in Isc induced by STa across jejuna and ilea taken from undernourished gerbils only. Removing bicarbonates from bathing buffer decreased the maximum increase in Isc across the jejuna and ilea taken from starved and undernourished gerbils.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The application of flux cored arc welding (FCAW) has increased in manufacturing and fabrication. Even though FCAW is well known for its good capability in producing quality welds, few reports have been published on the cause of the relatively high diffusible hydrogen content in the weld metal and its relation with the ingredients used in the wire production and with the welding parameters (mainly welding current). This paper describes experiments where data obtained from weld metal diffusible hydrogen analysis, metal droplet collection, and high-speed recording of metal droplet transfer were used to evaluate the effect of welding current on diffusible hydrogen content in the weld metal. The results from gas chromatography analysis showed that weld metal hydrogen content indeed increased with welding current. A polynomial regressional analysis concluded that hydrogen increase with current was better described by a linear function with proportional constant of approximately 0.7 or 70%. Different from the GMA welding transfer behavior, statistical analysis showed only a small increase in metal droplet size with increasing current. The metal transfer mode remained in the globular range for currents between 100 and 150 A. The most surprising findings were with the high-speed cinematography recording. Observing the high speed movies, it was possible to see that at low current, "unmelted" flux sporadically touched the weld pool but at higher current, the flux remained touching the weld pool during the whole time of droplet formation and transfer. It is believed that since the flux has ingredients that contain hydrogen, hydrogen passes through the arc undisturbed, going to the weld bead intact and increasing the hydrogen content in the weld metal. Another important observation is regarding to droplet size. Droplet size increased with increasing current because forces from decomposed gases from the flux could sustain the droplets, retarding their transfer and allowing them to grow.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-fluxed nickel alloys are usually flame fused after thermal spraying. However, due to the practical aspects of high temperatures reached during flame fusing, large structures such as the hydraulic turbines for power generation, can not be efficiently coated. An alternative is to fuse the sprayed coating with a gas tungsten electric arc. In this case, heating is much more intensive and substrate temperature during and after the fusing operation is much lower, thus reducing the possibility that any problem will occur. In this work, coatings of self-fluxed nickel alloy fused by flame and gas tungsten arc were evaluated as protection of hydraulic turbines against cavitational damage. Several tests were performed, including the ASTM ultrasonically vibration-induced cavitation, optical and scanning electronic microscopic metallography, and hardness tests. The results showed that the arc-fused coating presented better cavitation damage resistance, probably due to its finer microstructure. A field application of this new technique is also described. A self-fluxed Ni alloy was flame sprayed in critical regions of Francis-type hydraulic turbine blades and fused by a gas tungsten arc after spraying. The blades will be inspected during the next two years.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Columnar cell apical membranes (CCAM) in series with goblet cell apical membranes (GCAM) form an electroosmotic barrier separating the midgut lumen from epithelial cell cytoplasm. A unique K+ ATPase in GCAM generates three gradients across this barrier. A greater than 180 mV electrical gradient (lumen positive) drives amino acid uptake through voltage-dependent K+ symports. A greater than 1000-fold [H+] gradient (lumen alkaline) and a greater than 10-fold [K+] gradient (lumen concentrated) are adaptations to the high tannin and high K+ content, respectively, in dietary plant material. Agents which act on the apical membrane and disrupt the PD, H+, or K+ gradients are potential insecticides. Insect sensory epithelia and mammalian stria vascularis maintain similar PD and K+ gradients but would not be exposed to ingested anti-apical membrane insecticides. Following the demonstration by Sacchi et al. that Bacillus thuringiensis delta-endotoxin (Bt) induces specifically a K+ conductance increase in CCAM vesicles, we find that the K+ channel blocking agent, Ba2+, completely reverses Bt inhibition of the K+-carried short circuit current in the isolated midgut of Manduca sexta. Progress in characterizing the apical membrane includes finding that fluorosulfonylbenzoyladenosine binds specifically to certain GCAM polypeptides and that CCAM vesicles can be mass produced by Ca2+ or Mg2+ precipitation from Manduca sexta midgut.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work describes the methodology, basic procedures and instrumental employed by the Solar Energy Laboratory at Universidade Federal do Rio Grande do Sul for the determination of current-voltage characteristic curves of photovoltaic modules. According to this methodology, I-V characteristic curves were acquired for several modules under diverse conditions. The main electrical parameters were determined and the temperature and irradiance influence on photovoltaic modules performance was quantified. It was observed that most of the tested modules presented output power values considerably lower than those specified by the manufacturers. The described hardware allows the testing of modules with open-circuit voltage up to 50 V and short-circuit current up to 8 A.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In view of the importance of the intestine in the osmoregulation of freshwater fishes, we determined the effects of oxytocin, urotensin II (UII), and aldosterone added to the serosal side of the isolated posterior intestine of the freshwater-adapted teleost Anguilla anguilla on electrophysiological parameters. Oxytocin decreased the short-circuit current (SCC) and transepithelial potential difference (TPD) at concentrations of 1 and 10 mU/ml (to 50% and 42% of control values, respectively), but did not alter these parameters at a concentration of 0.1 mU/ml. UII reduced SCC and TPD at concentrations of 10 nM, 50 nM and 100 nM (to 85% of control values), but increased these parameters at the concentration of 500 nM (to 115% of control values). Aldosterone did not alter SCC or TPD at the concentrations tested (10 nM and 100 nM). Oxytocin may open Na+ channels in the apical membrane, allowing the flow of Na+ to the serosa, reducing SCC and TPD. Should this hypothesis be correct, oxytocin would be important for freshwater adaptation, since it would increase Na+ absorption. The reduction of SCC and TPD in the posterior intestine of A. anguilla induced by UII is evidence that this neurohormone is also important for freshwater adaptation in teleosts. Aldosterone did not show this effect probably due to the lack of receptors in this organ

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shiga toxin (Stx)-producing Escherichia coli (STEC) colonizes the large intestine causing a spectrum of disorders, including watery diarrhea, bloody diarrhea (hemorrhagic colitis), and hemolytic-uremic syndrome. It is estimated that hemolytic-uremic syndrome is the most common cause of acute renal failure in infants in Argentina. Stx is a multimeric toxin composed of one A subunit and five B subunits. In this study we demonstrate that the Stx2 B subunit inhibits the water absorption (Jw) across the human and rat colonic mucosa without altering the electrical parameters measured as transepithelial potential difference and short circuit current. The time-course Jw inhibition by 400 ng/ml purified Stx2 B subunit was similar to that obtained using 12 ng/ml Stx2 holotoxin suggesting that both, A and B subunits of Stx2 contributed to inhibit the Jw. Moreover, non-hemorrhagic fluid accumulation was observed in rat colon loops after 16 h of treatment with 3 and 30 ng/ml Stx2 B subunit. These changes indicate that Stx2 B subunit induces fluid accumulation independently of A subunit activity by altering the usual balance of intestinal absorption and secretion toward net secretion. In conclusion, our results suggest that the Stx2 B subunit, which is non-toxic for Vero cells, may contribute to the watery diarrhea observed in STEC infection. Further studies will be necessary to determine whether the toxicity of Stx2 B subunit may have pathogenic consequences when it is used as a component in an acellular STEC vaccine or as a vector in cancer vaccines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

T84 is an established cell line expressing an enterocyte phenotype whose permeability properties have been widely explored. Osmotic permeability (P OSM), hydraulic permeability (P HYDR) and transport-associated net water fluxes (J W-transp), as well as short-circuit current (I SC), transepithelial resistance (R T), and potential difference (deltaV T) were measured in T84 monolayers with the following results: P OSM 1.3 ± 0.1 cm.s-1 x 10-3; P HYDR 0.27 ± 0.02 cm.s-1; R T 2426 ± 109 omega.cm², and deltaV T 1.31 ± 0.38 mV. The effect of 50 µM 5,6-dichloro-1-ethyl-1,3-dihydro-2H-benzimidazol-2-one (DCEBIO), a "net Cl- secretory agent", on T84 cells was also studied. We confirm the reported important increase in I SC induced by DCEBIO which was associated here with a modest secretory deltaJ W-transp. The present results were compared with those reported using the same experimental approach applied to established cell lines originating from intestinal and renal epithelial cells (Caco-2, LLC-PK1 and RCCD-1). No clear association between P HYDR and R T could be demonstrated and high P HYDR values were observed in an electrically tight epithelium, supporting the view that a "water leaky" barrier is not necessarily an "electrically leaky" one. Furthermore, the modest secretory deltaJ W-transp was not consistent with previous results obtained with RCCD-1 cells stimulated with vasopressin (absorptive fluxes) or with T84 cells secreting water under the action of Escherichia coli heat stable enterotoxin. We conclude that, while the presence of aquaporins is necessary to dissipate an external osmotic gradient, coupling between water and ion transport cannot be explained by a simple and common underlying mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: To compare gas exchange at rest and during exercise in patients with chronic Chagas' heart disease grouped according to the Los Andes clinical/hemodynamic classification. METHODS: We studied 15 healthy volunteers and 52 patients grouped according to the Los Andes clinical/hemodynamic classification as follows: 17 patients in group IA (normal electrocardiogram/echocardiogram), 9 patients in group IB (normal electrocardiogram and abnormal echocardiogram), 14 patients in group II (abnormal electrocardiogram/echocardiogram, without congestive heart failure), and 12 patients in group III (abnormal electrocardiogram/echocardiogram with congestive heart failure). The following variables were analyzed: oxygen consumption (V O2), carbon dioxide production (V CO2), gas exchange rate (R), inspiratory current volume (V IC), expiratory current volume (V EC), respiratory frequency, minute volume (V E), heart rate (HR), maximum load, O2 pulse, and ventilatory anaerobic threshold (AT). RESULTS: When compared with the healthy group, patients in groups II and III showed significant changes in the following variables: V O2peak, V CO2peak, V ICpeak, V ECpeak, E, HR, and maximum load. Group IA showed significantly better results for these same variables as compared with group III. CONCLUSION: The functional capacity of patients in the initial phase of chronic Chagas' heart disease is higher than that of patients in an advanced phase and shows a decrease that follows the loss in cardiac-hemodynamic performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

WO3-ZrO2 catalysts promoted with Pt and Pd were tested as paraffin isomerization catalysts using n-hexane as model compound. Sulfur and amine poisoning and regeneration tests were used to assess the impact of the addition of Pt and Pd on the deactivation resistance and regenerability. Pt and PtPd catalysts were the most active for n-hexane isomerization. The low activity of the Pd catalyst was attributed to poor Pd metal properties when supported over WO3-ZrO2 and to a decrease of the number of BrQnsted acid sites. PtPd was the only catalyst capable of full regeneration after S poisoning. Amine poisoning completely supressed the isomerization activity and the original activity could only be restored by calcination and reduction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solid state compounds of 4-methylbenzylidenepyruvate with Al(III), Ga(III), In(III) and Sc(III) have been synthesized. Complexometry, X-ray powder diffractometry, infrared spectroscopy and simultaneous thermogravimetry-differential thermal analysis (TG-DTA) have been used to characterize and to study the thermal behavior of these compounds. The results provided information concerning the stoichiometry, crystallinity, thermal stability and thermal decomposition of these compounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this work was to optimize the parameter setup for GTAW of aluminum using an AC rectangular wave output and continuous feeding. A series of welds was carried-out in an industrial joint, with variation of the negative and positive current amplitude, the negative and positive duration time, the travel speed and the feeding speed. Another series was carried out to investigate the isolate effect of the negative duration time and travel speed. Bead geometry aspects were assessed, such as reinforcement, penetration, incomplete fusion and joint wall bridging. The results showed that currents at both polarities are remarkably more significant than the respective duration times. It was also shown that there is a straight relationship between welding speed and feeding speed and this relationship must be followed for obtaining sound beads. A very short positive duration time is enough for arc stability achievement and when the negative duration time is longer than 5 ms its effect on geometry appears. The possibility of optimizing the parameter selection, despite the high inter-correlation amongst them, was demonstrate through a computer program. An approach to reduce the number of variables in this process is also presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the present paper is to study the relationship between the fracture modes in hydrogen-assisted cracking (HAC) in microalloied steel and the emission of acoustic signals during the fracturing process. For this reason, a flux-cored arc weld (FCAW) was used in a high-strength low-alloy steel. The consumable used were the commercially available AWS E120T5-K4 and had a diameter of 1.6 mm. Two different shielding gases were used (CO2 and CO2+5% H2) to obtain complete phenomenon characterization. The implant test was applied with three levels of restriction stresses. An acoustic emission measurement system (AEMS) was coupled to the implant test apparatus. The output signal from the acoustic emission sensor was passed through an electronic amplifier and processed by a root mean square (RMS) voltage converter. Fracture surfaces were examined by scanning electron microscopy (SEM) and image analysis. Fracture modes were related with the intensity, the energy and the number of the peaks of the acoustic emission signal. The shielding gas CO2+5% H2 proved to be very useful in the experiments. Basically, three different fracture modes were identified in terms of fracture appearance: microvoid coalescence (MVC), intergranular (IG) and quasi-cleavage (QC). The results show that each mode of fracture presents a characteristic acoustic signal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To investigate the role of nitric oxide in human sepsis, ten patients with severe septic shock requiring vasoactive drug therapy and mechanical ventilation were enrolled in a prospective, open, non-randomized clinical trial to study the acute effects of methylene blue, an inhibitor of guanylate cyclase. Hemodynamic and metabolic variables were measured before and 20, 40, 60, and 120 min after the start of a 1-h intravenous infusion of 4 mg/kg of methylene blue. Methylene blue administration caused a progressive increase in mean arterial pressure (60 [55-70] to 70 [65-100] mmHg, median [25-75th percentiles]; P<0.05), systemic vascular resistance index (649 [479-1084] to 1066 [585-1356] dyne s-1 cm-5 m-2; P<0.05) and the left ventricular stroke work index (35 [27-47] to 38 [32-56] g m-1 m-2; P<0.05) from baseline to 60 min. The pulmonary vascular resistance index increased from 150 [83-207] to 186 [121-367] dyne s-1 cm-5 m-2 after 20 min (P<0.05). Mixed venous saturation decreased from 65 [56-76] to 63 [55-69]% (P<0.05) after 60 min. The PaO2/FiO2 ratio decreased from 168 [131-215] to 132 [109-156] mmHg (P<0.05) after 40 min. Arterial lactate concentration decreased from 5.1 ± 2.9 to 4.5 ± 2.1 mmol/l, mean ± SD (P<0.05) after 60 min. Heart rate, cardiac filling pressures, cardiac output, oxygen delivery and consumption did not change. Methylene blue administration was safe and no adverse effect was observed. In severe human septic shock, a short infusion of methylene blue increases systemic vascular resistance and may improve myocardial function. Although there was a reduction in blood lactate concentration, this was not explained by an improvement in tissue oxygenation, since overall oxygen availability did not change. However, there was a significant increase in pulmonary vascular tone and a deterioration in gas exchange. Further studies are needed to demonstrate if nitric oxide blockade with methylene blue can be safe for patients with septic shock and, particularly, if it has an effect on pulmonary function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the systemic and regional hemodynamic effects of early crystalloid infusion in an experimental model of septic shock induced by intravenous inoculation with live Escherichia coli. Anesthetized dogs received an intravenous infusion of 1.2 x 10(10) cfu/kg live E. coli in 30 min. After 30 min of observation, they were randomized to controls (no fluids; N = 7), or fluid resuscitation with lactated Ringer's solution, 16 ml/kg (N = 7) or 32 ml/kg (N = 7) over 30 min and followed for 120 min. Cardiac index, portal blood flow, mean arterial pressure, systemic and regional oxygen-derived variables, blood lactate, and gastric PCO2 were assessed. Rapid and progressive cardiovascular deterioration with reduction in cardiac output, mean arterial pressure and portal blood flow (~50, ~25 and ~70%, respectively) was induced by the live bacteria challenge. Systemic and regional territories showed significant increases in oxygen extraction and in lactate levels. Significant increases in venous-arterial (~9.6 mmHg), portal-arterial (~12.1 mmHg) and gastric mucosal-arterial (~18.4 mmHg) PCO2 gradients were also observed. Early fluid replacement, especially with 32 ml/kg volumes of crystalloids, promoted only partial and transient benefits such as increases of ~76% in cardiac index, of ~50% in portal vein blood flow and decreases in venous-arterial, portal-arterial, gastric mucosal-arterial PCO2 gradients (7.2 ± 1.0, 7.2 ± 1.3 and 9.7 ± 2.5 mmHg, respectively). The fluid infusion promoted only modest and transient benefits, unable to restore the systemic and regional perfusional and metabolic changes in this hypodynamic septic shock model.