14 resultados para Ser infinito
em Scielo Saúde Pública - SP
Resumo:
O artigo apresenta um esboço das produções historiográficas referentes ao tema da administração, direito e justiça na América portuguesa. Busca definir as potencialidades e os domínios de uma história da justiça, considerando suas relações com áreas já consagradas da historiografia.
Resumo:
Este trabalho busca explicar o que se deve entender por "desproporção do homem" no fragmento La 199. Ele tenta estabelecer a tese segundo a qual a desproporção do homem descreve um fechamento do homem em sua posição de centro de referência para o e no conhecimento: este caráter central designa a primazia epistemológica que, de fato, traduz a posição do homem cartesiano na natureza, isto é, face a ela. É por isso que o La 199 é uma crítica radical ao conceito cartesiano de infinito como nome de Deus.
Resumo:
1) Chamamos um desvio relativo simples o quociente de um desvio, isto é, de uma diferença entre uma variável e sua média ou outro valor ideal, e o seu erro standard. D= v-v/ δ ou D = v-v2/δ Num desvio composto nós reunimos vários desvios de acordo com a equação: D = + Σ (v - 2)²: o o = o1/ o o Todo desvio relativo é caracterizado por dois graus de liberdade (número de variáveis livres) que indicam de quantas observações foi calculado o numerador (grau de liberdade nf1 ou simplesmente n2) e o denominador (grau de liberdade nf2 ou simplesmente n2). 2) Explicamos em detalhe que a chamada distribuição normal ou de OAUSS é apenas um caso especial que nós encontramos quando o erro standard do dividendo do desvio relativo é calculado de um número bem grande de observações ou determinado por uma fórmula teórica. Para provar este ponto foi demonstrado que a distribuição de GAUSS pode ser derivada da distribuição binomial quando o expoente desta torna-se igual a infinito (Fig.1). 3) Assim torna-se evidente que um estudo detalhado da variação do erro standard é necessário. Mostramos rapidamente que, depois de tentativas preliminares de LEXIS e HELMERT, a solução foi achada pelos estatísticos da escola londrina: KARL PEARSON, o autor anônimo conhecido pelo nome de STUDENT e finalmente R. A. FISHER. 4) Devemos hoje distinguir quatro tipos diferentes de dis- tribuições de acaso dos desvios relativos, em dependência de combinação dos graus de liberdade n1 e n2. Distribuição de: fisher 1 < nf1 < infinito 1 < nf2 < infinito ( formula 9-1) Pearson 1 < nf1 < infinito nf 2= infinito ( formula 3-2) Student nf2 = 1 1 < nf2= infinito ( formula 3-3) Gauss nf1 = 1 nf2= infinito ( formula 3-4) As formas das curvas (Fig. 2) e as fórmulas matemáticas dos quatro tipos de distribuição são amplamente discutidas, bem como os valores das suas constantes e de ordenadas especiais. 5) As distribuições de GAUSS e de STUDENT (Figs. 2 e 5) que correspondem a variação de desvios simples são sempre simétricas e atingem o seu máximo para a abcissa D = O, sendo o valor da ordenada correspondente igual ao valor da constante da distribuição, k1 e k2 respectivamente. 6) As distribuições de PEARSON e FISHER (Fig. 2) correspondentes à variação de desvios compostos, são descontínuas para o valor D = O, existindo sempre duas curvas isoladas, uma à direita e outra à esquerda do valor zero da abcissa. As curvas são assimétricas (Figs. 6 a 9), tornando-se mais e mais simétricas para os valores elevados dos graus de liberdade. 7) A natureza dos limites de probabilidade é discutida. Explicámos porque usam-se em geral os limites bilaterais para as distribuições de STUDENT e GAUSS e os limites unilaterais superiores para as distribuições de PEARSON e FISHER (Figs. 3 e 4). Para o cálculo dos limites deve-se então lembrar que o desvio simples, D = (v - v) : o tem o sinal positivo ou negativo, de modo que é em geral necessário determinar os limites bilaterais em ambos os lados da curva (GAUSS e STUDENT). Os desvios relativos compostos da forma D = O1 : o2 não têm sinal determinado, devendo desprezar-se os sinais. Em geral consideramos apenas o caso o1 ser maior do que o2 e os limites se determinam apenas na extremidade da curva que corresponde a valores maiores do que 1. (Limites unilaterais superiores das distribuições de PEARSON e FISHER). Quando a natureza dos dados indica a possibilidade de aparecerem tanto valores de o(maiores como menores do que o2,devemos usar os limites bilaterais, correspondendo os limites unilaterais de 5%, 1% e 0,1% de probabilidade, correspondendo a limites bilaterais de 10%, 2% e 0,2%. 8) As relações matemáticas das fórmulas das quatro distribuições são amplamente discutidas, como também a sua transformação de uma para outra quando fazemos as necessárias alterações nos graus de liberdade. Estas transformações provam matematicamente que todas as quatro distribuições de acaso formam um conjunto. Foi demonstrado matematicamente que a fórmula das distribuições de FISHER representa o caso geral de variação de acaso de um desvio relativo, se nós extendermos a sua definição desde nfl = 1 até infinito e desde nf2 = 1 até infinito. 9) Existe apenas uma distribuição de GAUSS; podemos calcular uma curva para cada combinação imaginável de graus de liberdade para as outras três distribuições. Porém, é matematicamente evidente que nos aproximamos a distribuições limitantes quando os valores dos graus de liberdade se aproximam ao valor infinito. Partindo de fórmulas com área unidade e usando o erro standard como unidade da abcissa, chegamos às seguintes transformações: a) A distribuição de STUDENT (Fig. 5) passa a distribuição de GAUSS quando o grau de liberdade n2 se aproxima ao valor infinito. Como aproximação ao infinito, suficiente na prática, podemos aceitar valores maiores do que n2 = 30. b) A distribuição de PEARSON (Fig. 6) passa para uma de GAUSS com média zero e erro standard unidade quando nl é igual a 1. Quando de outro lado, nl torna-se muito grande, a distribuição de PEARSON podia ser substituída por uma distribuição modificada de GAUSS, com média igual ale unidade da abcissa igual a 1 : V2 n 1 . Para fins práticos, valores de nl maiores do que 30 são em geral uma aproximação suficiente ao infinito. c) Os limites da distribuição de FISHER são um pouco mais difíceis para definir. I) Em primeiro lugar foram estudadas as distribuições com n1 = n2 = n e verificamos (Figs. 7 e 8) que aproximamo-nos a uma distribuição, transformada de GAUSS com média 1 e erro standard l : Vn, quando o valor cresce até o infinito. Como aproximação satisfatória podemos considerar nl = n2 = 100, ou já nl =r n2 - 50 (Fig. 8) II) Quando n1 e n2 diferem (Fig. 9) podemos distinguir dois casos: Se n1 é pequeno e n2 maior do que 100 podemos substituir a distribuição de FISHER pela distribuição correspondente de PEARSON. (Fig. 9, parte superior). Se porém n1é maior do que 50 e n2 maior do que 100, ou vice-versa, atingimos uma distribuição modificada de GAUSS com média 1 e erro standard 1: 2n1 n3 n1 + n2 10) As definições matemáticas e os limites de probabilidade para as diferentes distribuições de acaso são dadas em geral na literatura em formas bem diversas, usando-se diferentes sistemas de abcissas. Com referência às distribuições de FISHER, foi usado por este autor, inicialmente, o logarítmo natural do desvio relativo, como abcissa. SNEDECOR (1937) emprega o quadrado dos desvios relativos e BRIEGER (1937) o desvio relativo próprio. As distribuições de PEARSON são empregadas para o X2 teste de PEARSON e FISHER, usando como abcissa os valores de x² = D². n1 Foi exposto o meu ponto de vista, que estas desigualdades trazem desvantagens na aplicação dos testes, pois atribui-se um peso diferente aos números analisados em cada teste, que são somas de desvios quadrados no X2 teste, somas des desvios quadrados divididos pelo grau de liberdade ou varianças no F-teste de SNEDECOR, desvios simples no t-teste de STUDENT, etc.. Uma tábua dos limites de probabilidade de desvios relativos foi publicada por mim (BRIEGER 1937) e uma tábua mais extensa será publicada em breve, contendo os limites unilaterais e bilaterais, tanto para as distribuições de STUDENT como de FISHER. 11) Num capítulo final são discutidas várias complicações que podem surgir na análise. Entre elas quero apenas citar alguns problemas. a) Quando comparamos o desvio de um valor e sua média, deveríamos corretamente empregar também os erros de ambos estes valores: D = u- u o2 +²5 Mas não podemos aqui imediatamente aplicar os limites de qualquer das distribuições do acaso discutidas acima. Em geral a variação de v, medida por o , segue uma distribuição de STUDENT e a variação da média V segue uma distribuição de GAUSS. O problema a ser solucionado é, como reunir os limites destas distribuições num só teste. A solução prática do caso é de considerar a média como uma constante, e aplicar diretamente os limites de probabilidade das dstribuições de STUDENT com o grau de liberdade do erro o. Mas este é apenas uma solução prática. O problema mesmo é, em parte, solucionado pelo teste de BEHRENDS. b) Um outro problema se apresenta no curso dos métodos chamados "analysis of variance" ou decomposição do erro. Supomos que nós queremos comparar uma média parcial va com a média geral v . Mas podemos calcular o erro desta média parcial, por dois processos, ou partindo do erro individual aa ou do erro "dentro" oD que é, como explicado acima, uma média balançada de todos os m erros individuais. O emprego deste último garante um teste mais satisfatório e severo, pois êle é baseado sempre num grau de liberdade bastante elevado. Teremos que aplicar dois testes em seguida: Em primeiro lugar devemos decidir se o erro ou difere do êrro dentro: D = δa/δ0 n1 = np/n2 m. n p Se este teste for significante, uma substituição de oa pelo oD não será admissível. Mas mesmo quando o resultado for insignificante, ainda não temos certeza sobre a identidade dos dois erros, pois pode ser que a diferença entre eles é pequena e os graus de liberdade não são suficientes para permitir o reconhecimento desta diferença como significante. Podemos então substituirmos oa por oD de modo que n2 = m : np: D = V a - v / δa Np n = 1 n2 = np passa para D = v = - v/ δ Np n = 1 n2 = m.n p as como podemos incluir neste último teste uma apreciação das nossas dúvidas sobre o teste anterior oa: oD ? A melhor solução prática me parece fazer uso da determinação de oD, que é provavelmente mais exata do que oa, mas usar os graus de liberdade do teste simples: np = 1 / n2 = np para deixar margem para as nossas dúvidas sobre a igualdade de oa a oD. Estes dois exemplos devem ser suficientes para demonstrar que apesar dos grandes progressos que nós podíamos registrar na teoria da variação do acaso, ainda existem problemas importantes a serem solucionados.
Resumo:
1) O equilíbrio em populações, inicialmente compostas de vários genotipos depende essencialmente de três fatores: a modalidade de reprodução e a relativa viabilidade e fertilidade dos genotipos, e as freqüências iniciais. 2) Temos que distinguir a) reprodução por cruzamento livre quando qualquer indivíduo da população pode ser cruzado com qualquer outro; b) reprodução por autofecundação, quando cada indivíduo é reproduzido por uma autofecundação; c) finalmente a reprodução mista, isto é, os casos intermediários onde os indivíduos são em parte cruzados, em parte autofecundados. 3) Populações heterozigotas para um par de gens e sem seleção. Em populações com reprodução cruzada se estabelece na primeira geração um equilíbrio entre os três genotipos, segundo a chamada regra de Hardy- Weinberg. Inicial : AA/u + Aa/v aa/u = 1 Equilibirio (u + v/2)² + u + v/2 ( w + v/2) + (w + v/2)² = p2 + 2 p o. q o. + q²o = 1 Em populações com autofecundação o equilíbrio será atingido quando estiverem presentes apenas os dois homozigotos, e uma fórmula é dada que permite calcular quantas gerações são necessárias para atingir aproximadamente este resultado. Finalmente, em populações com reprodução mista, obtemos um equilíbrio com valores intermediários, conforme Quadro 1. Frequência Genotipo Inicial mº Geração Final AA u u + 2m-1v / 2m+1 u + 1/2v Aa v 2/ 2m+2 v - aa w w + 2m - 1/ 2m + 1 v w + 1/2 v 4) Os índices de sobrevivencia. Para poder chegar a fórmulas matemáticas simples, é necessário introduzir índices de sobrevivência para medir a viabilidade e fertilidade dos homozigotos, em relação à sobrevivência dos heterozigotos. Designamos a sobrevivência absoluta de cada um dos três genotipos com x, y e z, e teremos então: x [ A A] : y [ Aa] : z [ aa] = x/y [ A A] : [ Aa] : z/ y [aa] = R A [ AA] : 1 [Aa] : Ra [aa] É evidente que os índices R poderão ter qualquer valor desde zero, quando haverá uma eliminação completa dos homozigotos, até infinito quando os heterozigotos serão completamente eliminados. Os termos (1 -K) de Haldane e (1 -S) ou W de Wright não têm esta propriedade matemática, podendo variar apenas entre zero e um. É ainda necessário distinguir índices parciais, de acordo com a marcha da eliminação nas diferentes fases da ontogenia dos indivíduos. Teremos que distinguir em primeiro lugar entre a eliminação durante a fase vegetativa e a eliminação na fase reprodutiva. Estas duas componentes são ligadas pela relação matemática. R - RV . RR 5) Populações com reprodução cruzada e eliminação. - Considerações gerais. a) O equilibrio final, independente da freqüência inicial dos genes e dos genotipos para valores da sobrevivência diferentes de um, é atingido quando os gens e os genotipos estão presentes nas proporções seguintes: (Quadro 2). po / qo = 1- ro / 1-Ra [AA] (1 - Ro)² . Rav [ Aa] = 2(1 - Ra) ( 1 - Ra) [a a} = ( 1 - Ra)² . RaA b) Fórmulas foram dadas que permitem calcular as freqüências dos genotipos em qualquer geração das populações. Não foi tentado obter fórmulas gerais, por processos de integração, pois trata-se de um processo descontínuo, com saltos de uma e outra geração, e de duração curta. 6) Populações com reprodução cruzada e eliminação. Podemos distinguir os seguintes casos: a) Heterosis - (Quadro 3 e Fig. 1). Ra < 1; Ra < 1 Inicial : Final : p (A)/q(a) -> 1-ra/1-ra = positivo/zero = infinito Os dois gens e assim os três genotipos zigóticos permanecem na população. Quando as freqüências iniciais forem maiores do que as do equilíbrio elas serão diminuidas, e quando forem menores, serão aumentadas. b) Gens recessivos letais ou semiletais. (Quadro 1 e Fig. 2). O equilíbrio será atingido quando o gen, que causa a redução da viabilidade dos homozigotos, fôr eliminado da população. . / c) Gens parcialmente dominantes semiletais. (Quadro 5 e Fig. 3). Rª ; Oz Ra < 1 Inicial : Equilibrio biológico Equilíbrio Matemático pa(A)/q(a) -> positivo /zero -> 1- Rq/ 1-Ra = positivo/negativo d) Genes incompatíveis. Ra > 1 ; Ra > 1; Ra > Ra Equílibrio/biológico p (A)/ q(a) -> positivo/zero Equilibrio matemático -> positivo/ zero -> zero/negativo -> 1-Ra/1 - Ra = negativo/negativo Nestes dois casos devemos distinguir entre o significado matemático e biológico. A marcha da eliminação não pode chegar até o equilíbrio matemático quando um dos gens alcança antes a freqüência zero, isto é, desaparece. Nos três casos teremos sempre uma eliminação relativamente rápida de um dos gens «e com isso do homozigoto respectivo e dos heterozigotòs. e) Foram discutidos mais dois casos especiais: eliminação reprodutiva diferencial dos dois valores do sexo feminino e masculino, -e gens para competição gametofítica. (Quadros 6 e 7 e Figs. 4 a 6). 7) População com autofecundação e seleção. O equilíbrio será atingido quando os genotipos estiverem presentes nas seguintes proporções: (Quadro 8); [AA] ( 0,5 - Ra). R AV [Aa] = 4. ( 0,5 - Ra) . (0.5 -R A) [aa] ( 0,5 - R A) . Rav Também foram dadas fórmulas que permitem calcular as proporções genotípicas em cada geração e a marcha geral da eliminação dos genotipos. 8)Casos especiais. Podemos notar que o termo (0,5 -R) nas fórmulas para as populações autofecundadas ocupa mais ou menos a mesma importância do que o termo (1-R) nas fórmulas para as populações cruzadas. a) Heterosis. (Quadro 9 e Fig. 7). Quando RA e Ra têm valores entre 0 e 0,5, obtemos o seguinte resultado: No equilíbrio ambos os gens estão presentes e os três heterozigotos são mais freqüentes do que os homozigotos. b) Em todos os demais casos, quando RA e Ra forem iguais ou maiores do que 0,5, o equilíbrio é atingido quando estão representados na população apenas os homozigotos mais viáveis e férteis. (Quadro 10). 9) Foram discutidos os efeitos de alterações dos valores da sobrevivência (Fig. 9), do modo de reprodução (Fig. 10) e das freqüências iniciais dos gens (Fig. 8). 10) Algumas aplicações à genética aplicada. Depois de uma discussão mais geral, dois problemas principais foram tratados: a) A homogeneização: Ficou demonstrado que a reprodução por cruzamento livre representa um mecanismo muito ineficiente, e que se deve empregar sempre ou a autofecundação ou pelo menos uma reprodução mista com a maior freqüência possível de acasalamentos consanguíneos. Fórmulas e dados (Quadro 11 e 12), permitem a determinação do número de gerações necessárias para obter um grau razoável de homozigotia- b) Heterosis. Existem dois processos, para a obtenção de um alto grau de heterozigotia e com isso de heterosis: a) O método clássico do "inbreeding and outbreeding". b) O método novo das populações balançadas, baseado na combinação de gens que quando homozigotos dão urna menor sobrevivência do que quando heterozigotos. 11) Algumas considerações sobre a teoria de evolução: a) Heterosis. Os gens com efeito "heterótico", isto é, nos casos onde os heterozigotos s mais viáveis e férteis, do que os homozigotos, oferecem um mecanismo especial de evolução, pois nestes casos a freqüência dos gens, apesar de seu efeito negativo na fase homozigota, tem a sua freqüência aumentada até que seja atingido o valor do equilíbrio. b) Gens letais e semiletais recessivos. Foi demonstrado que estes gens devem ser eliminados automáticamente das populações. Porém, ao contrário do esperado, não s raros por exemplo em milho e em Drosophila, gens que até hoje foram classificados nesta categoria. Assim, um estudo detalhado torna-se necessário para resolver se os heterozigotos em muitos destes casos não serão de maior sobrevivência do que ambos os homozigotos, isto é, que se trata realmente de genes heteróticos. c) Gens semiletais parcialmente dominantes. Estes gens serão sempre eliminados nas populações, e de fato eles são encontrados apenas raramente. d) Gens incompatíveis. São também geralmente eliminados das populações. Apenas em casos especiais eles podem ter importância na evolução, representando um mecanismo de isolamento.
Resumo:
O desenvolvimento da erosão hídrica ocorre em resposta ao modo como a água se move através e sobre uma determinada paisagem. O modelo digital de elevação (MDE) deve, portanto, ser o mais preciso possível, uma vez que constitui a base para a análise do relevo. Este trabalho teve como objetivo definir um modelo digital de elevação hidrologicamente consistente (MDEHC) e o método de direção de fluxo mais adequado para a definição da rede de drenagem na sub-bacia do horto florestal Terra Dura, município de Eldorado do Sul, RS. Foram testados os modelos gerados com os interpoladores Topogrid e redes triangulares irregulares (Triangulated Irregular Network -TIN) linear (TIN L) e TIN natural neighbor (TIN NN). A qualidade em relação às análises hidrológicas foi avaliada por meio da comparação das curvas de nível geradas pelos modelos testados com as curvas originais da sub-bacia (escala 1:10.000); da avaliação da quantidade de áreas planas; e da comparação da drenagem gerada pelos modelos a partir dos métodos de direção de fluxo Deterministic (D8) e Deterministic infinity (D∞ ou D infinito) com a drenagem original. Entre os modelos avaliados, o Topogrid apresentou maior consistência hidrológica, verificada na melhor continuidade das curvas de nível (menos arestas) e maior detalhamento da área de drenagem e divisores, acarretando menor quantidade de áreas planas e caminhos de fluxo mais detalhados, independentemente do método de direção de fluxo utilizado. Em relação à rede de drenagem, o método distribuído D∞ obteve melhor desempenho na descrição dos caminhos de fluxo, comparado ao método de direção única D8. O MDEHC Topogrid associado ao método D∞ proporcionou a identificação mais precisa dos caminhos preferenciais do fluxo que formam a rede de drenagem.
Resumo:
A medida do comprimento cervical por ultra-sonografia transvaginal é útil no rastreamento do parto prematuro, sendo o encurtamento do colo fator preditor do trabalho de parto pré-termo. Os métodos tradicionais para avaliar a cérvice na gestação são limitados e insatisfatórios. O exame de toque digital, considerado método padrão, demonstra variação entre diferentes examinadores, entretanto, a ultra-sonografia transvaginal é exame eficiente durante a gravidez. Recentemente, o exame ultra-sonográfico tridimensional tem sido utilizado na prática clínica, incluindo o estudo do colo. Grande volume de informações pode ser obtido e armazenado utilizando-se a tecnologia tridimensional. A informação armazenada permite ser manipulada e analisada por número infinito de planos. O exame ultra-sonográfico transvaginal tridimensional é o único capaz de obter o plano coronal pela visualização da imagem em organização multiplanar. Este método aparenta oferecer potencial diagnóstico no aumento da acurácia da ultra-sonografia cervical.
Resumo:
Leibniz afirma em diversas ocasiões que a análise infinita é o conceito central para explicar a compatibilização entre determinismo e contingência. Não é evidente, no entanto, por que a aplicação analógica de um conceito matemático, tal como o de cálculo infinitesimal, poderia solucionar esse problema ontológico, nem em que sentido deve-se entender tal analogia. O objetivo deste artigo é esclarecer esses dois pontos.
Resumo:
Neste artigo, pretendo examinar a tese cartesiana da livre criação das verdades eternas a partir da conjugação dos atributos divinos que, segundo Descartes, são conhecidos por nós e sua tese de que, entre as verdades eternas livremente criadas por Deus, estão incluídos os princípios lógicos. A partir desse exame, concluo que, até onde o intelecto finito do homem pode conceber, a tese cartesiana da livre criação das verdades eternas envolve ao menos as seguintes teses: a) Deus, por ser infinito e puro pensamento em ato, estabelece necessariamente em si todas as essências e verdades, incluindo essências e verdades que para o intelecto finito parecem impossíveis, já que lhe aparecem como contraditórias; b) ao estabelecer as essências e verdades, Deus instancia algumas (e assim as cria) como conteúdos de ideias inatas nas mentes finitas, que são criadas com estrutura lógica; c) ao estabelecer as essências e verdades, Deus instancia no mundo atual ao menos algumas das essências e verdades não contraditórias instanciadas nas mentes finitas; e d) embora a mente humana finita não as possa conceber clara e distintamente, é certo que Deus instancia no mundo atual ao menos algumas das essências e verdades que aparecem como contraditórias, isto é, instancia no mundo atual ao menos algumas das essências e verdades que para a mente finita aparecem como impossíveis por serem por ela inconcebíveis, o que é confirmado por ao menos dois casos mencionados por Descartes.
Resumo:
RESUMO Este trabalho desenvolve aspectos da controvérsia entre Fichte e Schelling em relação aos elementos estéticos, linguístico-filosóficos e da filosofia da religião de ambos, que é foco das "Investigações sobre a liberdade humana de Schelling", assim como das exposições da doutrina da ciência e da ética do Fichte tardio (1810-1813). As divergências entre Fichte e Schelling não envolvem apenas problemas especulativos, mas sim variadas implicações e consequências dos seus sistemas filosóficos, que podem ser destacadas por uma análise da função da analogia nos dois autores. A analogia é uma figura que agrega a estética, a filosofia da linguagem e a filosofia da religião nos dois autores; ela é um significante que põe o problema do significado, ou seja, põe o problema da relação entre finito e infinito (Schelling) e da relação entre saber absoluto e saber particular (Fichte). Essa relação vai ser investigada a partir de algumas passagens das "Investigações" de Schelling (§2); num segundo momento, será analisada a função do conceito de analogia e de símbolo nesse contexto (§3); e, no final, a diferente compreensão da Igreja como símbolo do absoluto na "Filosofia da arte" de Schelling e na "Doutrina moral" fichtiana de 1798 e 1812 (§4).
Resumo:
Os objetivos deste estudo foram avaliar a viabilidade econômica de manejar a vegetação nativa do cerrado submetida a seis diferentes níveis de intervenção, levando-se em conta alterações nos parâmetros valor da terra, nível de produtividade, custo de produção e preço da madeira, e comparar, em termos econômicos, duas opções para uso de terras originalmente ocupadas com vegetação de cerrado: produção de madeira (lenha) para energia, manejando a vegetação do cerrado, e retirada da vegetação para plantio de eucalipto. Os dados foram obtidos em Coração de Jesus-MG, em experimento instalado em uma área de 30 ha, submetida a seis tratamentos (retirada de 50, 70, 80, 90 e 100% da área basal e testemunha), com cinco repetições cada. Para avaliação econômica usou-se o valor presente líquido, considerando um horizonte de planejamento infinito. Concluiu-se que o ciclo de corte ótimo econômico é de 10 anos. Todos os regimes de manejo foram viáveis economicamente, exceto a retirada de 50% da área basal. O custo da terra é significativo na formação do custo de produção da vegetação do cerrado, o que evidencia que planos de manejo podem ser mais lucrativos se forem implantados em regiões onde o preço da terra é baixo. Variações na produtividade, nos custos de produção e no preço da madeira também afetaram de maneira significativa a viabilidade econômica dos regimes de manejo. Do ponto de vista econômico, investir no plantio de eucalipto em regiões de cerrado, visando produzir madeira para energia, só é mais interessante que manejar a vegetação do cerrado se a produtividade do eucalipto for maior do que 45 st/ha.ano.
Resumo:
O objetivo deste estudo foi realizar a prognose do crescimento e da produção a qualquer idade, associadas às informações de custo e receita, contemplando-se ciclos de um, dois e três cortes, bem como a determinação da idade técnica e econômica de corte. O critério para determinação da idade técnica de corte foi a maximização do incremento médio anual, enquanto a idade econômica de corte foi obtida com base no valor presente líquido, equiparando-se os horizontes no infinito para comparação das diferentes idades. Os resultados obtidos indicaram que as rotações técnica e econômica diferiram entre si e que ambas variaram em função do índice de local, portanto ao adotar uma rotação média por projeto pode haver perdas significativas de receita.
Resumo:
O objetivo deste estudo foi realizar a análise financeira e a simulação de risco de investimento em sistemas agroflorestais (SAFs) implantados em 1987, no Campo Experimental da Embrapa Rondônia, localizado no município de Machadinho d'Oeste, RO. A análise financeira foi realizada mediante os métodos de avaliação de projetos florestais, e para a análise de risco utilizou-se a técnica de simulação de Monte Carlo, mediante o programa @RISK. Entre os arranjos testados, o SAF T1 Castanha-do-brasil-banana-pimenta-do-reino-cupuaçu apresentou o melhor desempenho financeiro em relação aos SAFs T2 Freijó-banana-pimenta-do-reino-cupuaçu e T3 Pupunha-banana-pimenta-do-reino-cupuaçu . Os custos com tratos culturais e colheita representaram mais de 70% da composição dos custos totais, e a participação da mão-de-obra foi superior a 50% nas fases de preparo da área e de manutenção (tratos culturais) dos SAFs. A simulação da análise de risco indicou que as variáveis que afetaram o Valor Presente Líquido no Horizonte Infinito (VPL*), de acordo com a ordem de importância (R), foram: taxa de desconto, preço do fruto de cupuaçu (Theobroma grandiflorum), custo de colheita, preço da madeira de castanha-do-brasil (Bertholletia excelsa) e o custo de tratos culturais. Apesar do alto custo de implantação e manutenção, o SAF T1 apresentou uma probabilidade de 15% de os valores do Valor Presente Líquido (VPL) se concentrarem em torno de R$35.000 ha-1.ano-1.
Resumo:
Foram estudadas as propriedades termofísicas calor específico, massa específica, difusividade térmica e condutividade térmica de polpas de bacuri em diferentes concentrações. O calor específico foi determinado pelo método do calorímetro de mistura; a massa específica foi determinada em picnômetro; a difusividade térmica foi obtida utilizando-se o método do cilindro infinito; a condutividade térmica foi determinada a partir dos resultados experimentais obtidos para massa específica, calor específico e difusividade térmica. Todas as propriedades também foram estimadas teoricamente com o uso de equações propostas em literatura e por meio de regressões dependentes da concentração. Entre os resultados experimentais o calor específico situou-se entre 3,616 a 2,986 kJ/kgºC; a massa específica variou de 1.008,40 a 1.048,36 kg/m³; a difusividade térmica variou de 1,637x10-7 a 1,787x10-7 m²/s; a condutividade térmica variou de 0,50 a 0,64 W/mºC. Exceto a massa específica, o valor de todas as propriedades diminuiu com o aumento da concentração. A condutividade térmica foi melhor representada por equação do tipo exponencial. As demais propriedades foram bem ajustadas por equações do tipo quadrática.
Resumo:
Platão tem uma visão negativa da arte e da tragédia. A "irracionalidade" da prática artística está na base dessa negação. Sua visão é contrária ao perspectivismo humanista de Eurípedes e dos sofistas. Na filosofia renascentista, o sujeito observador (temporal e racional) pressupõe o múltiplo e o infinito. O perspectivismo está na base dessa orientação e Shakespeare é a melhor expressão artística desse pressuposto defendido na filosofia por Giordano Bruno.